Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurophysiol ; 120(6): 2719-2729, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30133383

RESUMEN

The rapid development of wireless communications has raised questions about their potential health risks. So far, the only identified biological effects of radiofrequency fields (RF) are known to be caused by heating, but the issue of potential nonthermal biological effects, especially on the central nervous system (CNS), remains open. We previously reported a decrease in the firing and bursting rates of neuronal cultures exposed to a Global System for Mobile (GSM) RF field at 1,800 MHz for 3 min (Moretti D, Garenne A, Haro E, Poulleier de Gannes F, Lagroye I, Lévêque P, Veyret B, Lewis N. Bioelectromagnetics 34: 571-578, 2013). The aim of the present work was to assess the dose-response relationship for this effect and also to identify a potential differential response elicited by pulse-modulated GSM and continuous-wave (CW) RF fields. Spontaneous bursting activity of neuronal cultures from rat embryonic cortices was recorded using 60-electrode multielectrode arrays (MEAs). At 17-28 days in vitro, the neuronal cultures were subjected to 15-min RF exposures, at specific absorption rates (SAR) ranging from 0.01 to 9.2 W/kg. Both GSM and CW signals elicited a clear decrease in bursting rate during the RF exposure phase. This effect became more marked with increasing SAR and lasted even beyond the end of exposure for the highest SAR levels. Moreover, the amplitude of the effect was greater with the GSM signal. Altogether, our experimental findings provide evidence for dose-dependent effects of RF signals on the bursting rate of neuronal cultures and suggest that part of the mechanism is nonthermal. NEW & NOTEWORTHY In this study, we investigated the effects of some radiofrequency (RF) exposure parameters on the electrical activity of neuronal cultures. We detected a clear decrease in bursting activity, dependent on exposure duration. The amplitude of this effect increased with the specific absorption rate (SAR) level and was greater with Global System for Mobile signal than with continuous-wave signal, at the same average SAR. Our experiment provides unique evidence of a decrease in electrical activity of cortical neuronal cultures during RF exposure.


Asunto(s)
Potenciales de Acción/efectos de la radiación , Neuronas/efectos de la radiación , Ondas de Radio , Animales , Células Cultivadas , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley
2.
Biophys J ; 112(1): 87-98, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-28076819

RESUMEN

Multiplexed bioluminescence resonance energy transfer (BRET) assays were developed to monitor the activation of several functional transient receptor potential (TRP) channels in live cells and in real time. We probed both TRPV1 intramolecular rearrangements and its interaction with Calmodulin (CaM) under activation by chemical agonists and temperature. Our BRET study also confirmed that: (1) capsaicin and heat promoted distinct transitions, independently coupled to channel gating, and that (2) TRPV1 and Ca2+-bound CaM but not Ca2+-free CaM were preassociated in resting live cells, while capsaicin activation induced both the formation of more TRPV1/CaM complexes and conformational changes. The BRET assay, based on the interaction with Calmodulin, was successfully extended to TRPV3 and TRPV4 channels. We therefore developed a full-spectral three-color BRET assay for analyzing the specific activation of each of the three TRPV channels in a single sample. Such key improvement in BRET measurement paves the way for the simultaneous monitoring of independent biological pathways in live cells.


Asunto(s)
Transferencia de Energía , Mediciones Luminiscentes , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Técnicas Biosensibles , Calmodulina/metabolismo , Células HEK293 , Calor , Humanos
3.
Bioelectromagnetics ; 36(4): 287-93, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25846808

RESUMEN

The present study focused on gap junctional intercellular communication (GJIC) as a target for biological effects of extremely low-frequency (ELF) magnetic field (MF) exposure. Fluorescence recovery after photobleaching microscopy (FRAP) was used to visualize diffusion of a fluorescent dye between NIH3T3 fibroblasts through gap junctions. The direct effect of 24 h exposure to 50 Hz MF at 0.4 or 1 mT on GJIC function was assessed in one series of experiments. The potential synergism of MF with an inhibitor of GJIC, phorbol ester (TPA), was studied in another series by observing FRAP when NIH3T3 cells were incubated with TPA for 1 h following 24 h exposure to MF. In contrast to other reports of ELF-MF effects on GJIC, under our experimental conditions we observed neither direct inhibition of GJIC nor synergism with TPA-induced inhibition from 50 Hz MF exposures.


Asunto(s)
Comunicación Celular , Uniones Comunicantes , Campos Magnéticos , Animales , Colorantes Fluorescentes/metabolismo , Cinética , Ratones , Células 3T3 NIH
4.
Bioelectromagnetics ; 34(8): 571-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23913345

RESUMEN

The central nervous system is the most likely target of mobile telephony radiofrequency (RF) field exposure in terms of biological effects. Several electroencephalography (EEG) studies have reported variations in the alpha-band power spectrum during and/or after RF exposure, in resting EEG and during sleep. In this context, the observation of the spontaneous electrical activity of neuronal networks under RF exposure can be an efficient tool to detect the occurrence of low-level RF effects on the nervous system. Our research group has developed a dedicated experimental setup in the GHz range for the simultaneous exposure of neuronal networks and monitoring of electrical activity. A transverse electromagnetic (TEM) cell was used to expose the neuronal networks to GSM-1800 signals at a SAR level of 3.2 W/kg. Recording of the neuronal electrical activity and detection of the extracellular spikes and bursts under exposure were performed using microelectrode arrays (MEAs). This work provides the proof of feasibility and preliminary results of the integrated investigation regarding exposure setup, culture of the neuronal network, recording of the electrical activity, and analysis of the signals obtained under RF exposure. In this pilot study on 16 cultures, there was a 30% reversible decrease in firing rate (FR) and bursting rate (BR) during a 3 min exposure to RF. Additional experiments are needed to further characterize this effect.


Asunto(s)
Teléfono Celular , Red Nerviosa/citología , Red Nerviosa/efectos de la radiación , Neuronas/citología , Neuronas/efectos de la radiación , Ondas de Radio/efectos adversos , Animales , Corteza Cerebral/citología , Proyectos Piloto , Radiometría , Ratas , Ratas Sprague-Dawley
5.
Bioelectromagnetics ; 33(5): 410-20, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22228576

RESUMEN

An experimental approach was used to assess immunological biomarkers in the sera of young rats exposed in utero and postnatal to non-ionizing radiofrequency fields. Pregnant rats were exposed free-running, 2 h/day and 5 days/week to a 2.45 GHz Wi-Fi signal in a reverberation chamber at whole-body specific absorption rates (SAR) of 0, 0.08, 0.4, and 4 W/kg (with 10, 10, 12, and 9 rats, respectively), while cage control rats were kept in the animal facility (11 rats). Dams were exposed from days 6 to 21 of gestation and then three newborns per litter were further exposed from birth to day 35 postnatal. On day 35 after birth, all pups were sacrificed and sera collected. The screening of sera for antibodies directed against 15 different antigens related to damage and/or pathological markers was conducted using enzyme-linked immunosorbent assay (ELISA). No change in humoral response of young pups was observed, regardless of the types of biomarker and SAR levels. This study also provided some data on gestational outcome following in utero exposure to Wi-Fi signals. Mass evaluation of dams and pups and the number of pups per litter was monitored, and the genital tracts of young rats were observed for abnormalities by measuring anogenital distance. Under these experimental conditions, our observations suggest a lack of adverse effects of Wi-Fi exposure on delivery and general condition of the animals.


Asunto(s)
Anticuerpos/sangre , Anticuerpos/inmunología , Exposición Materna/efectos adversos , Resultado del Embarazo , Tecnología Inalámbrica , Animales , Biomarcadores/sangre , Tamaño Corporal/efectos de la radiación , Parto Obstétrico , Femenino , Estudios de Seguimiento , Crecimiento y Desarrollo/efectos de la radiación , Tamaño de la Camada/efectos de la radiación , Embarazo , Ondas de Radio/efectos adversos , Ratas , Ratas Wistar
6.
Artículo en Inglés | MEDLINE | ID: mdl-22311618

RESUMEN

BACKGROUND: The increase in exposure to the Wireless Fidelity (Wi-Fi) wireless communication signal has raised public health concerns especially for young people. Animal studies looking at the effects of early life and prenatal exposure to this source of electromagnetic fields, in the radiofrequency (RF) range, on development and behavior have been considered as high priority research needs by the World Health Organization. METHODS: For the first time, our study assessed the effects of in utero exposure to a 2450 MHz Wi-Fi signal (2 hr/day, 6 days/week for 18 days) on pregnant rats and their pups. Three levels in terms of whole-body specific absorption rate were used: 0.08, 0.4, and 4 W/kg. The prenatal study on fetuses delivered by caesarean (P20) concerned five females/group. The dams and their offspring were observed for 28 days after delivery (15 females/group). RESULTS: For all test conditions, no abnormalities were noted in the pregnant rats and no significant signs of toxicity were observed in the pre- and postnatal development of the pups, even at the highest level of 4 W/kg. CONCLUSIONS: In the present study, no teratogenic effect of repeated exposures to the Wi-Fi wireless communication signal was demonstrated even at the highest level of 4 W/kg. The results from this screening study aimed at investigating Wi-Fi effects, strengthen the previous conclusions that teratology and development studies have not detected any noxious effects of exposures to mobile telephony-related RF fields at exposure levels below standard limits.


Asunto(s)
Campos Electromagnéticos/efectos adversos , Efectos Tardíos de la Exposición Prenatal/patología , Monitoreo de Radiación/métodos , Ondas de Radio/efectos adversos , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Femenino , Embarazo , Ratas , Ratas Wistar , Reproducción , Pruebas de Toxicidad , Tecnología Inalámbrica
7.
Radiat Res ; 172(3): 359-67, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19708785

RESUMEN

Salford et al. reported in 2003 that a single 2-h exposure to GSM-900 mobile telephony signals induced brain damage (increased permeability of the blood-brain barrier and presence of dark neurons) 50 days after exposure. In our study, 16 Fischer 344 rats (14 weeks old) were exposed head-only to the GSM-900 signal for 2 h at various brain-averaged SARs (0, 0.14 and 2.0 W/kg) or were used as cage or positive controls. Albumin leakage and neuron degeneration were evaluated 14 and 50 days after exposure. No apoptotic neurons were found 14 days after the last exposure using the TUNEL method. No statistically significant albumin leakage was observed. Neuronal degeneration, assessed using cresyl violet or the more specific marker Fluoro-Jade B, was not significantly different among the tested groups. No apoptotic neurons were detected. The findings of our study did not confirm the previous results of Salford et al.


Asunto(s)
Barrera Hematoencefálica/fisiología , Barrera Hematoencefálica/efectos de la radiación , Teléfono Celular , Exposición a Riesgos Ambientales/análisis , Cabeza/efectos de la radiación , Neuronas/patología , Neuronas/efectos de la radiación , Animales , Relación Dosis-Respuesta en la Radiación , Masculino , Microondas , Permeabilidad/efectos de la radiación , Dosis de Radiación , Ratas , Ratas Endogámicas F344
8.
Amyotroph Lateral Scler ; 10(5-6): 370-3, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19922126

RESUMEN

There is some evidence from epidemiological studies of an association between occupational exposure to electromagnetic fields and Amyotrophic Lateral Sclerosis (ALS). Our aim was to perform, for the first time, an animal study in a controlled magnetic environment. We used the SOD-1 mouse model to assess the possible effect of ELF magnetic fields on development of the disease. Seven mice per group were exposed to 50 Hz magnetic fields at two intensities (100 and 1000 microT(rms)) before the onset of the clinical signs of ALS. Exposure lasted 7 weeks, and body weight, motor performance and life span were monitored. Our results did not reveal any evidence of a link between ELF exposure and ALS in this transgenic animal model.


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Campos Electromagnéticos/efectos adversos , Ratones Transgénicos , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Peso Corporal/efectos de la radiación , Niño , Modelos Animales de Enfermedad , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Estimación de Kaplan-Meier , Ratones , Actividad Motora/efectos de la radiación , Exposición Profesional/efectos adversos , Distribución Aleatoria , Prueba de Desempeño de Rotación con Aceleración Constante , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Adulto Joven
9.
Int J Radiat Biol ; 84(1): 61-8, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17852563

RESUMEN

PURPOSE: We previously reported the inability of Global System for Mobile communication (GSM) signals at 900 (GSM-900) and 1800 (GSM-1800) MegaHertz (MHz) to induce morphological and physiological changes in epidermis of Hairless rats. The present work aimed at investigating heat shock proteins (HSP) expression--as a cellular stress marker--in the skin of Hairless rats exposed to GSM-900 and -1800 signals. MATERIALS AND METHODS: We studied the expression of the Heat-shock cognate (Hsc) 70, and the inducible forms of the Heat-shock proteins (Hsp) 25 and 70. Rat skin was locally exposed using loop antenna and restrain rockets to test several Specific Absorption Rates (SAR) and exposure durations: (i) single exposure: 2 hours at 0 and 5 W/kg; (ii) repeated exposure: 2 hours per day, 5 days per week, for 12 weeks, at 0, 2.5, and 5 W/kg. HSP expression was detected on skin slices using immunolabeling in the epidermal area. RESULTS: Our data indicated that neither single nor repeated exposures altered HSP expression in rat skin, irrespective of the GSM signal or SAR considered. CONCLUSIONS: Under our experimental conditions (local SAR < 5 W/kg), there was no evidence that GSM signals alter HSP expression in rat skin.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Neoplasias/metabolismo , Ondas de Radio/efectos adversos , Piel/efectos de la radiación , Animales , Epidermis/metabolismo , Epidermis/efectos de la radiación , Femenino , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP27 , Ratas , Ratas sin Pelo , Piel/metabolismo
10.
Sci Rep ; 7(1): 15496, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29138435

RESUMEN

Blood-brain barrier (BBB) permeation and neuron degeneration were assessed in the rat brain following exposure to mobile communication radiofrequency (RF) signals (GSM-1800 and UMTS-1950). Two protocols were used: (i) single 2 h exposure, with rats sacrificed immediately, and 1 h, 1, 7, or 50 days later, and (ii) repeated exposures (2 h/day, 5 days/week, for 4 weeks) with the effects assessed immediately and 50 days after the end of exposure. The rats' heads were exposed at brain-averaged specific absorption rates (BASAR) of 0.026, 0.26, 2.6, and 13 W/kg. No adverse impact in terms of BBB leakage or neuron degeneration was observed after single exposures or immediately after the end of repeated exposure, with the exception of a transient BBB leakage (UMTS, 0.26 W/kg). Fifty days after repeated exposure, the occurrence of degenerating neurons was unchanged on average. However, a significant increased albumin leakage was detected with both RF signals at 13 W/kg. In this work, the strongest, delayed effect was induced by GSM-1800 at 13 W/kg. Considering that 13 W/kg BASAR in the rat head is equivalent to 4 times as much in the human head, deleterious effects may occur following repeated human brain exposure above 50 W/kg.


Asunto(s)
Barrera Hematoencefálica/efectos de la radiación , Teléfono Celular , Degeneración Nerviosa/etiología , Ondas de Radio/efectos adversos , Animales , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Degeneración Nerviosa/patología , Permeabilidad/efectos de la radiación , Ratas , Ratas Wistar , Resultado del Tratamiento
11.
FEBS J ; 273(24): 5491-507, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17094784

RESUMEN

In recent years, possible health hazards due to radiofrequency radiation (RFR) emitted by mobile phones have been investigated. Because several publications have suggested that RFR is stressful, we explored the potential biological effects of Global System for Mobile phone communication at 900 MHz (GSM-900) exposure on cultures of isolated human skin cells and human reconstructed epidermis (hRE) using human keratinocytes. As cell stress markers, we studied Hsc70, Hsp27 and Hsp70 heat shock protein (HSP) expression and epidermis thickness, as well as cell proliferation and apoptosis. Cells were exposed to GSM-900 under optimal culture conditions, for 48 h, using a specific absorption rate (SAR) of 2 W x kg(-1). This SAR level represents the recommended limit for local exposure to a mobile phone. The various biological parameters were analysed immediately after exposure. Apoptosis was not induced in isolated cells and there was no alteration in hRE thickness or proliferation. No change in HSP expression was observed in isolated keratinocytes. By contrast, a slight but significant increase in Hsp70 expression was observed in hREs after 3 and 5 weeks of culture. Moreover, fibroblasts showed a significant decrease in Hsc70, depending on the culture conditions. These results suggest that adaptive cell behaviour in response to RFR exposure, depending on the cell type and culture conditions, is unlikely to have deleterious effects at the skin level.


Asunto(s)
Teléfono Celular , Epidermis/efectos de la radiación , Fibroblastos/efectos de la radiación , Queratinocitos/efectos de la radiación , Microondas , Adulto , Apoptosis/efectos de la radiación , Proliferación Celular/efectos de la radiación , Senescencia Celular , Células Epidérmicas , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas del Choque Térmico HSC70/efectos de la radiación , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/efectos de la radiación , Humanos , Péptidos y Proteínas de Señalización Intracelular , Queratinocitos/metabolismo , Microondas/efectos adversos , Persona de Mediana Edad , Modelos Biológicos , Técnicas de Cultivo de Órganos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/efectos de la radiación , Factores de Tiempo , Rayos Ultravioleta
12.
Radiat Res ; 179(6): 707-16, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23662649

RESUMEN

The bioeffects of exposure to Wireless High-Fidelity (WiFi) signals on the developing nervous systems of young rodents was investigated by assessing the in vivo and in situ expression levels of three stress markers: 3-Nitrotyrosine (3-NT), an oxidative stress marker and two heat-shock proteins (Hsp25 and Hsp70). These biomarkers were measured in the brains of young rats exposed to a 2450 MHz WiFi signal by immunohistochemistry. Pregnant rats were first exposed or sham exposed to WiFi from day 6 to day 21 of gestation. In addition three newborns per litter were further exposed up to 5 weeks old. Daily 2-h exposures were performed blind in a reverberation chamber and whole-body specific absorption rate levels were 0, 0.08, 0.4 and 4 W/kg. 3-NT and stress protein expression was assayed in different areas of the hippocampus and cortex. No significant difference was observed among exposed and sham-exposed groups. These results suggest that repeated exposure to WiFi during gestation and early life has no deleterious effects on the brains of young rats.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Proteínas de Choque Térmico/metabolismo , Tirosina/análogos & derivados , Tecnología Inalámbrica , Animales , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/efectos de la radiación , Femenino , Embarazo , Ratas , Ratas Wistar , Factores de Tiempo , Tirosina/metabolismo
13.
Reprod Toxicol ; 36: 1-5, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23178895

RESUMEN

In recent decades, concern has been growing about decreasing fecundity and fertility in the human population. Exposure to non-ionizing electromagnetic fields (EMF), especially radiofrequency (RF) fields used in wireless communications has been suggested as a potential risk factor. For the first time, we evaluated the effects of exposure to the 2450MHz Wi-Fi signal (1h/day, 6days/week) on the reproductive system of male and female Wistar rats, pre-exposed to Wi-Fi during sexual maturation. Exposure lasted 3 weeks (males) or 2 weeks (females), then animals were mated and couples exposed for 3 more weeks. On the day before delivery, the fetuses were observed for lethality, abnormalities, and clinical signs. In our experiment, no deleterious effects of Wi-Fi exposure on rat male and female reproductive organs and fertility were observed for 1h per days. No macroscopic abnormalities in fetuses were noted, even at the critical level of 4W/kg.


Asunto(s)
Desarrollo Embrionario/efectos de la radiación , Desarrollo Fetal/efectos de la radiación , Infertilidad Femenina/etiología , Infertilidad Masculina/etiología , Ondas de Radio/efectos adversos , Maduración Sexual/efectos de la radiación , Tecnología Inalámbrica , Animales , Relación Dosis-Respuesta en la Radiación , Implantación del Embrión/efectos de la radiación , Pérdida del Embrión/etiología , Ingestión de Energía/efectos de la radiación , Femenino , Genitales Masculinos/crecimiento & desarrollo , Genitales Masculinos/inmunología , Genitales Masculinos/efectos de la radiación , Masculino , Exposición Materna/efectos adversos , Tamaño de los Órganos/efectos de la radiación , Ovario/crecimiento & desarrollo , Ovario/inmunología , Ovario/efectos de la radiación , Exposición Paterna/efectos adversos , Distribución Aleatoria , Ratas , Ratas Wistar
14.
Brain Res ; 1368: 44-51, 2011 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-21047499

RESUMEN

There is some concern that exposure to extremely low-frequency magnetic fields (MF) causes adverse health effects via signal transduction pathways. Two previous studies reported that exposure to 50-Hz MF decreased the binding affinity of the 1B receptor subtype of serotonin (5-HT) in rat brain membranes. The aim of this study was to investigate whether the exposure to MF affects binding to the 5-HT(1B) receptor and a physiological function associated with 5-HT(1B) receptor activation. Rat brain crude membrane fractions, including 5-HT(1B) receptor and C6-glial cells transfected with human 5-HT(1B) receptor gene, were exposed to 50-Hz MF at 1 mT using Merritt coils under temperature-regulated conditions. In the rat crude membrane, there was no significant difference in the affinity constant of [(3)H]-5-HT between exposed (K(d): 0.92±0.38 nM) and sham-exposed (K(d): 1.00±0.32 nM). The lack of affinity change after exposure was also confirmed using a chemical agonist of the 5-HT receptor, [(3)H]-5-carboxytryptamine (K(d): 0.59±0.06 nM for exposed and 0.71±0.08 nM for sham). Similar negative results in terms of affinity constant were obtained on the human 5-HT(1B) receptor in C6-glial cells. In addition, forskolin-stimulated cAMP production was inhibited by 5-HT administration in a dose-dependent manner in C6-glial cells, but exposure did not modify the inhibitory response. This study thus failed to confirm the previous results and findings suggest that exposure to MF below the current occupational limit does not affect the physiological function involved in 5-HT(1B) receptor subtypes.


Asunto(s)
Encéfalo/metabolismo , Membrana Celular/metabolismo , Campos Electromagnéticos , Neuroglía/metabolismo , Receptor de Serotonina 5-HT1B/metabolismo , Serotonina/metabolismo , Animales , Células Cultivadas , Colforsina/farmacología , AMP Cíclico/metabolismo , Neuroglía/efectos de los fármacos , Ratas , Triptaminas/farmacología
15.
Proteomics ; 6(17): 4745-54, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16878293

RESUMEN

Possible biological effects of mobile phone microwaves were investigated in vitro. In this study, which was part of the 5FP EU project REFLEX (Risk Evaluation of Potential Environmental Hazards From Low-Energy Electromagnetic Field Exposure Using Sensitive in vitro Methods), six human cell types, immortalized cell lines and primary cells, were exposed to 900 and 1800 MHz. RNA was isolated from exposed and sham-exposed cells and labeled for transcriptome analysis on whole-genome cDNA arrays. The results were evaluated statistically using bioinformatics techniques and examined for biological relevance with the help of different databases. NB69 neuroblastoma cells, T lymphocytes, and CHME5 microglial cells did not show significant changes in gene expression. In EA.hy926 endothelial cells, U937 lymphoblastoma cells, and HL-60 leukemia cells we found between 12 and 34 up- or down-regulated genes. Analysis of the affected gene families does not point towards a stress response. However, following microwave exposure, some but not all human cells might react with an increase in expression of genes encoding ribosomal proteins and therefore up-regulating the cellular metabolism.


Asunto(s)
Teléfono Celular , Regulación hacia Abajo/efectos de la radiación , Microondas , Regulación hacia Arriba/efectos de la radiación , Línea Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA