Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Pharmacol Res ; 199: 107018, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38013162

RESUMEN

Mitochondria's role as engines and beacons of metabolism and determinants of cellular health is being redefined through their therapeutic application as "Living Drugs" (LDs). Artificial mitochondrial transfer/transplant (AMT/T), encompassing various techniques to modify, enrich, or restore mitochondria in cells and tissues, is revolutionizing acellular therapies and the future of medicine. This article proposes a necessary definition for LDs within the Advanced Therapeutic Medicinal Products (ATMPs) framework. While recognizing different types of LDs as ATMPs, such as mesenchymal stem cells (MSCs) and chimeric antigen receptor T (CAR T) cells, we focus on mitochondria due to their unique attributes that distinguish them from traditional cell therapies. These attributes include their inherent living nature, diverse sources, industry applicability, validation, customizability for therapeutic needs, and their capability to adapt and respond within recipient cells. We trace the journey from initial breakthroughs in AMT/T to the current state-of-the-art applications by emerging innovative companies, highlighting the need for manufacturing standards to navigate the transition of mitochondrial therapies from concept to clinical practice. By providing a comprehensive overview of the scientific, clinical, and commercial landscape of mitochondria as LDs, this article contributes to the essential dialogue among regulatory agencies, academia, and industry to shape their future in medicine.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Mitocondrias , Mitocondrias/metabolismo , Comercio
2.
Mitochondrion ; 75: 101848, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246335

RESUMEN

The mitochondrial DNA (mtDNA) is replicated and canonically functions within intracellular mitochondria, but recent discoveries reveal that the mtDNA has another exciting extracellular life. mtDNA fragments and mitochondria-containing vesicular structures are detected at high concentrations in cell-free forms, in different biofluids. Commonly referred to as cell-free mtDNA (cf-mtDNA), the field is currently without a comprehensive classification system that acknowledges the various biological forms of mtDNA and whole mitochondria existing outside the cell. This absence of classification hampers the creation of precise and consistent quantification methods across different laboratories, which is crucial for unraveling the molecular and biological characteristics of mtDNA. In this article, we integrate recent findings to propose a classification for different types of Extracellular mtDNA [ex-mtDNA]. The major biologically distinct types include: Naked mtDNA [N-mtDNA], mtDNA within non-mitochondrial Membranes [M-mtDNA], Extracellular mitochondria [exM-mtDNA], and mtDNA within Mitochondria enclosed in a Membrane [MM-mtDNA]. We outline the challenges associated with accurately quantifying these ex-mtDNA types, suggest potential physiological roles for each ex-mtDNA type, and explore how this classification could establish a foundation for future research endeavors and further analysis and definitions for ex-mtDNA. By proposing this classification of circulating mtDNA forms, we draw a parallel with the clinically recognized forms of cholesterol, such as HDL and LDL, to illustrate potential future significance in a similar manner. While not directly analogous, these mtDNA forms may one day be as biologically relevant in clinical interpretation as cholesterol fractions are currently. We also discuss how advancing methodologies to reliably quantify distinct ex-mtDNA forms could significantly enhance their utility as health or disease biomarkers, and how their application may offer innovative therapeutic approaches.


Asunto(s)
ADN Mitocondrial , Mitocondrias , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Colesterol
3.
Sci Rep ; 14(1): 13098, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862573

RESUMEN

Human space exploration poses inherent risks to astronauts' health, leading to molecular changes that can significantly impact their well-being. These alterations encompass genomic instability, mitochondrial dysfunction, increased inflammation, homeostatic dysregulation, and various epigenomic changes. Remarkably, these changes bear similarities to those observed during the aging process on Earth. However, our understanding of the connection between these molecular shifts and disease development in space remains limited. Frailty syndrome, a clinical syndrome associated with biological aging, has not been comprehensively investigated during spaceflight. To bridge this knowledge gap, we leveraged murine data obtained from NASA's GeneLab, along with astronaut data gathered from the JAXA and Inspiration4 missions. Our objective was to assess the presence of biological markers and pathways related to frailty, aging, and sarcopenia within the spaceflight context. Through our analysis, we identified notable changes in gene expression patterns that may be indicative of the development of a frailty-like condition during space missions. These findings suggest that the parallels between spaceflight and the aging process may extend to encompass frailty as well. Consequently, further investigations exploring the utility of a frailty index in monitoring astronaut health appear to be warranted.


Asunto(s)
Envejecimiento , Biomarcadores , Fragilidad , Vuelo Espacial , Envejecimiento/genética , Animales , Ratones , Humanos , Astronautas , Masculino , Ingravidez/efectos adversos , Sarcopenia/metabolismo
4.
Mitochondrion ; 66: 13-26, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35817296

RESUMEN

Mitochondrial dysfunction is a major hallmark of aging. Mitochondrial DNA (mtDNA) mutations (inherited or acquired) may cause a malfunction of the respiratory chain (RC), and thus negatively affect cell metabolism and function. In contrast, certain mtDNA single nucleotide polymorphisms (SNPs) may be beneficial to mitochondrial electron transport chain function and the extension of cellular health as well as lifespan. The goal of the MitoAging project is to detect key physiological characteristics and mechanisms that improve mitochondrial function and use them to develop therapies to increase longevity and a healthy lifespan. We chose to perform a systematic literature review (SLR) as a tool to collect key mtDNA SNPs associated with an increase in lifespan. Then validated our results by comparing them to the MitoMap database. Next, we assessed the effect of relevant SNPs on protein stability. A total of 28 SNPs were found in protein coding regions. These SNPs were reported in Japan, China, Turkey, and India. Among the studied SNPs, the C5178A mutation in the ND2 gene of Complex I of the RC was detected in all the reviewed reports except in Uygur Chinese centenarians. Then, we found that G9055A (ATP6 gene) and A10398G (ND3 gene) polymorphisms have been associated with a protective effect against Parkinson's disease (PD). Additionally, C8414T in ATP8 was significantly associated with longevity in three Japanese reports. Interestingly, using MitoMap we found that G9055A (ATP6 gene) was the only SNP promoting longevity not associated with any pathology. The identification of SNPs associated with an increase in lifespan opens the possibility to better understand individual differences regarding a decrease in illness susceptibility and find strategies that contribute to healthy aging.


Asunto(s)
Longevidad , Polimorfismo de Nucleótido Simple , Anciano de 80 o más Años , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Genes Mitocondriales , Humanos , Longevidad/genética , Mitocondrias/genética , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA