Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
mSystems ; 7(4): e0022422, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35856664

RESUMEN

Predicting outcomes of marine disease outbreaks presents a challenge in the face of both global and local stressors. Host-associated microbiomes may play important roles in disease dynamics but remain understudied in marine ecosystems. Host-pathogen-microbiome interactions can vary across host ranges, gradients of disease, and temperature; studying these relationships may aid our ability to forecast disease dynamics. Eelgrass, Zostera marina, is impacted by outbreaks of wasting disease caused by the opportunistic pathogen Labyrinthula zosterae. We investigated how Z. marina phyllosphere microbial communities vary with rising wasting disease lesion prevalence and severity relative to plant and meadow characteristics like shoot density, longest leaf length, and temperature across 23° latitude in the Northeastern Pacific. We detected effects of geography (11%) and smaller, but distinct, effects of temperature (30-day max sea surface temperature, 4%) and disease (lesion prevalence, 3%) on microbiome composition. Declines in alpha diversity on asymptomatic tissue occurred with rising wasting disease prevalence within meadows. However, no change in microbiome variability (dispersion) was detected between asymptomatic and symptomatic tissues. Further, we identified members of Cellvibrionaceae, Colwelliaceae, and Granulosicoccaceae on asymptomatic tissue that are predictive of wasting disease prevalence across the geographic range (3,100 kilometers). Functional roles of Colwelliaceae and Granulosicoccaceae are not known. Cellvibrionaceae, degraders of plant cellulose, were also enriched in lesions and adjacent green tissue relative to nonlesioned leaves. Cellvibrionaceae may play important roles in disease progression by degrading host tissues or overwhelming plant immune responses. Thus, inclusion of microbiomes in wasting disease studies may improve our ability to understand variable rates of infection, disease progression, and plant survival. IMPORTANCE The roles of marine microbiomes in disease remain poorly understood due, in part, to the challenging nature of sampling at appropriate spatiotemporal scales and across natural gradients of disease throughout host ranges. This is especially true for marine vascular plants like eelgrass (Zostera marina) that are vital for ecosystem function and biodiversity but are susceptible to rapid decline and die-off from pathogens like eukaryotic slime-mold Labyrinthula zosterae (wasting disease). We link bacterial members of phyllosphere tissues to the prevalence of wasting disease across the broadest geographic range to date for a marine plant microbiome-disease study (3,100 km). We identify Cellvibrionaceae, plant cell wall degraders, enriched (up to 61% relative abundance) within lesion tissue, which suggests this group may be playing important roles in disease progression. These findings suggest inclusion of microbiomes in marine disease studies will improve our ability to predict ecological outcomes of infection across variable landscapes spanning thousands of kilometers.


Asunto(s)
Microbiota , Estramenopilos , Zosteraceae , Prevalencia , Estramenopilos/fisiología , Interacciones Huésped-Patógeno , Zosteraceae/microbiología
2.
PeerJ ; 9: e12549, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003917

RESUMEN

Quantifying recruitment of corals is important for evaluating their capacity to recover after disturbances through natural processes, yet measuring recruitment rates in situ is challenging due to the minute size of the study organism and the complexity of benthic communities. Settlement tiles are widely used in studies of coral recruitment because they can be viewed under a microscope to enhance accuracy, but methodological choices such as the rugosity of tiles used and when and how to scan tiles for recruits post-collection may cause inconsistencies in measured recruitment rates. We deployed 2,880 tiles with matching rugosity on top and bottom surfaces to 30 sites along the Florida Reef Tract for year-long saturations during a three year study. We scanned the top and bottom surfaces of the same tiles for scleractinian recruits before (live scans) and after treating tiles with sodium hypochlorite (corallite scans). Recruit counts were higher in corallite than live scans, indicating that scleractinian recruitment rates should not be directly compared between studies using live scans and those scanning tiles which have been processed to remove fouling material. Recruit counts also were higher on tile tops in general, but the proportion of settlement to the top and bottom surfaces varied significantly by scleractinian family. Thus, biases may be introduced in recruitment datasets by differences in tile rugosity or by only scanning a subset of tile surfaces. Finally, we quantified octocoral recruitment during live scans and found they preferentially settled to tile tops. We recommend that recruitment tile studies include corallite scans for scleractinian skeletons, deploy tiles with matching rugosity on top and bottom surfaces, and scan all tile surfaces.

3.
Sci Rep ; 11(1): 19185, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584122

RESUMEN

To better understand the decline of one of earth's most biodiverse habitats, coral reefs, many survey programs employ regular photographs of the benthos. An emerging challenge is the time required to annotate the large volume of digital imagery generated by these surveys. Here, we leverage existing machine-learning tools (CoralNet) and develop new fit-to-purpose programs to process and score benthic photoquadrats using five years of data from the Smithsonian MarineGEO Network's biodiversity monitoring program at Carrie Bow Cay, Belize. Our analysis shows that scleractinian coral cover on forereef sites (at depths of 3-10 m) along our surveyed transects increased significantly from 6 to 13% during this period. More modest changes in macroalgae, turf algae, and sponge cover were also observed. Community-wide analysis confirmed a significant shift in benthic structure, and follow-up in situ surveys of coral demographics in 2019 revealed that the emerging coral communities are dominated by fast-recruiting and growing coral species belonging to the genera Agaricia and Porites. While the positive trajectory reported here is promising, Belizean reefs face persistent challenges related to overfishing and climate change. Open-source computational toolkits offer promise for increasing the efficiency of reef monitoring, and therefore our ability to assess the future of coral reefs in the face of rapid environmental change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA