Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Brain Mapp ; 45(4): e26641, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38488470

RESUMEN

Gene expression varies across the brain. This spatial patterning denotes specialised support for particular brain functions. However, the way that a given gene's expression fluctuates across the brain may be governed by general rules. Quantifying patterns of spatial covariation across genes would offer insights into the molecular characteristics of brain areas supporting, for example, complex cognitive functions. Here, we use principal component analysis to separate general and unique gene regulatory associations with cortical substrates of cognition. We find that the region-to-region variation in cortical expression profiles of 8235 genes covaries across two major principal components: gene ontology analysis suggests these dimensions are characterised by downregulation and upregulation of cell-signalling/modification and transcription factors. We validate these patterns out-of-sample and across different data processing choices. Brain regions more strongly implicated in general cognitive functioning (g; 3 cohorts, total meta-analytic N = 39,519) tend to be more balanced between downregulation and upregulation of both major components (indicated by regional component scores). We then identify a further 29 genes as candidate cortical spatial correlates of g, beyond the patterning of the two major components (|ß| range = 0.18 to 0.53). Many of these genes have been previously associated with clinical neurodegenerative and psychiatric disorders, or with other health-related phenotypes. The results provide insights into the cortical organisation of gene expression and its association with individual differences in cognitive functioning.


Asunto(s)
Encéfalo , Trastornos Mentales , Humanos , Encéfalo/fisiología , Cognición/fisiología , Mapeo Encefálico , Trastornos Mentales/metabolismo , Expresión Génica , Imagen por Resonancia Magnética
2.
Mol Psychiatry ; 26(9): 4839-4852, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32467648

RESUMEN

Emerging evidence suggests that obesity impacts brain physiology at multiple levels. Here we aimed to clarify the relationship between obesity and brain structure using structural MRI (n = 6420) and genetic data (n = 3907) from the ENIGMA Major Depressive Disorder (MDD) working group. Obesity (BMI > 30) was significantly associated with cortical and subcortical abnormalities in both mass-univariate and multivariate pattern recognition analyses independent of MDD diagnosis. The most pronounced effects were found for associations between obesity and lower temporo-frontal cortical thickness (maximum Cohen´s d (left fusiform gyrus) = -0.33). The observed regional distribution and effect size of cortical thickness reductions in obesity revealed considerable similarities with corresponding patterns of lower cortical thickness in previously published studies of neuropsychiatric disorders. A higher polygenic risk score for obesity significantly correlated with lower occipital surface area. In addition, a significant age-by-obesity interaction on cortical thickness emerged driven by lower thickness in older participants. Our findings suggest a neurobiological interaction between obesity and brain structure under physiological and pathological brain conditions.


Asunto(s)
Trastorno Depresivo Mayor , Anciano , Encéfalo/diagnóstico por imagen , Corteza Cerebral , Trastorno Depresivo Mayor/genética , Humanos , Imagen por Resonancia Magnética , Obesidad/genética , Factores de Riesgo
3.
Brain ; 144(12): 3769-3778, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34581779

RESUMEN

Development of cerebral small vessel disease, a major cause of stroke and dementia, may be influenced by early life factors. It is unclear whether these relationships are independent of each other, of adult socio-economic status or of vascular risk factor exposures. We examined associations between factors from birth (ponderal index, birth weight), childhood (IQ, education, socio-economic status), adult small vessel disease, and brain volumes, using data from four prospective cohort studies: STratifying Resilience And Depression Longitudinally (STRADL) (n = 1080; mean age = 59 years); the Dutch Famine Birth Cohort (n = 118; mean age = 68 years); the Lothian Birth Cohort 1936 (LBC1936; n = 617; mean age = 73 years), and the Simpson's cohort (n = 110; mean age = 78 years). We analysed each small vessel disease feature individually and summed to give a total small vessel disease score (range 1-4) in each cohort separately, then in meta-analysis, adjusted for vascular risk factors and adult socio-economic status. Higher birth weight was associated with fewer lacunes [odds ratio (OR) per 100 g = 0.93, 95% confidence interval (CI) = 0.88 to 0.99], fewer infarcts (OR = 0.94, 95% CI = 0.89 to 0.99), and fewer perivascular spaces (OR = 0.95, 95% CI = 0.91 to 0.99). Higher childhood IQ was associated with lower white matter hyperintensity burden (OR per IQ point = 0.99, 95% CI 0.98 to 0.998), fewer infarcts (OR = 0.98, 95% CI = 0.97 to 0.998), fewer lacunes (OR = 0.98, 95% CI = 0.97 to 0.999), and lower total small vessel disease burden (OR = 0.98, 95% CI = 0.96 to 0.999). Low education was associated with more microbleeds (OR = 1.90, 95% CI = 1.33 to 2.72) and lower total brain volume (mean difference = -178.86 cm3, 95% CI = -325.07 to -32.66). Low childhood socio-economic status was associated with fewer lacunes (OR = 0.62, 95% CI = 0.40 to 0.95). Early life factors are associated with worse small vessel disease in later life, independent of each other, vascular risk factors and adult socio-economic status. Risk for small vessel disease may originate in early life and provide a mechanistic link between early life factors and risk of stroke and dementia. Policies investing in early child development may improve lifelong brain health and contribute to the prevention of dementia and stroke in older age.


Asunto(s)
Peso al Nacer , Enfermedades de los Pequeños Vasos Cerebrales , Escolaridad , Inteligencia , Factores Socioeconómicos , Anciano , Enfermedades de los Pequeños Vasos Cerebrales/etiología , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo
4.
Eur J Neurosci ; 54(6): 6281-6303, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34390586

RESUMEN

There is increasing interest in using data-driven unsupervised methods to identify structural underpinnings of common mental illnesses, including major depressive disorder (MDD) and associated traits such as cognition. However, studies are often limited to severe clinical cases with small sample sizes and most do not include replication. Here, we examine two relatively large samples with structural magnetic resonance imaging (MRI), measures of lifetime MDD and cognitive variables: Generation Scotland (GS subsample, N = 980) and UK Biobank (UKB, N = 8,900), for discovery and replication, using an exploratory approach. Regional measures of FreeSurfer derived cortical thickness (CT), cortical surface area (CSA), cortical volume (CV) and subcortical volume (subCV) were input into a clustering process, controlling for common covariates. The main analysis steps involved constructing participant K-nearest neighbour graphs and graph partitioning with Markov stability to determine optimal clustering of participants. Resultant clusters were (1) checked whether they were replicated in an independent cohort and (2) tested for associations with depression status and cognitive measures. Participants separated into two clusters based on structural brain measurements in GS subsample, with large Cohen's d effect sizes between clusters in higher order cortical regions, commonly associated with executive function and decision making. Clustering was replicated in the UKB sample, with high correlations of cluster effect sizes for CT, CSA, CV and subCV between cohorts across regions. The identified clusters were not significantly different with respect to MDD case-control status in either cohort (GS subsample: pFDR = .2239-.6585; UKB: pFDR = .2003-.7690). Significant differences in general cognitive ability were, however, found between the clusters for both datasets, for CSA, CV and subCV (GS subsample: d = 0.2529-.3490, pFDR  < .005; UKB: d = 0.0868-0.1070, pFDR  < .005). Our results suggest that there are replicable natural groupings of participants based on cortical and subcortical brain measures, which may be related to differences in cognitive performance, but not to the MDD case-control status.


Asunto(s)
Trastorno Depresivo Mayor , Encéfalo/diagnóstico por imagen , Análisis por Conglomerados , Cognición , Trastorno Depresivo Mayor/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
5.
Brain Behav Immun ; 92: 39-48, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33221487

RESUMEN

Inflammatory processes are implicated in the aetiology of Major Depressive Disorder (MDD); however, the relationship between peripheral inflammation, brain structure and depression remains unclear, partly due to complexities around the use of acute/phasic inflammatory biomarkers. Here, we report the first large-scale study of both serological and methylomic signatures of CRP (considered to represent acute and chronic measures of inflammation respectively) and their associations with depression status/symptoms, and structural neuroimaging phenotypes (T1 and diffusion MRI) in a large community-based sample (Generation Scotland; NMDD cases = 271, Ncontrols = 609). Serum CRP was associated with overall MDD severity, and specifically with current somatic symptoms- general interest (ß = 0.145, PFDR = 6 × 10-4) and energy levels (ß = 0.101, PFDR = 0.027), along with reduced entorhinal cortex thickness (ß = -0.095, PFDR = 0.037). DNAm CRP was significantly associated with reduced global grey matter/cortical volume and widespread reductions in integrity of 16/24 white matter tracts (with greatest regional effects in the external and internal capsules, ßFA= -0.12 to -0.14). In general, the methylation-based measures showed stronger associations with imaging metrics than serum-based CRP measures (ßaverage = -0.15 versus ßaverage = 0.01 respectively). These findings provide evidence for central effects of peripheral inflammation from both serological and epigenetic markers of inflammation, including in brain regions previously implicated in depression. This suggests that these imaging measures may be involved in the relationship between peripheral inflammation and somatic/depressive symptoms. Notably, greater effects on brain morphology were seen for methylation-based rather than serum-based measures of inflammation, indicating the importance of such measures for future studies.


Asunto(s)
Trastorno Depresivo Mayor , Biomarcadores , Encéfalo/diagnóstico por imagen , Trastorno Depresivo Mayor/genética , Epigénesis Genética , Humanos , Inflamación/genética , Escocia
6.
Mol Psychiatry ; 25(7): 1511-1525, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31471575

RESUMEN

Alterations in white matter (WM) microstructure have been implicated in the pathophysiology of major depressive disorder (MDD). However, previous findings have been inconsistent, partially due to low statistical power and the heterogeneity of depression. In the largest multi-site study to date, we examined WM anisotropy and diffusivity in 1305 MDD patients and 1602 healthy controls (age range 12-88 years) from 20 samples worldwide, which included both adults and adolescents, within the MDD Working Group of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium. Processing of diffusion tensor imaging (DTI) data and statistical analyses were harmonized across sites and effects were meta-analyzed across studies. We observed subtle, but widespread, lower fractional anisotropy (FA) in adult MDD patients compared with controls in 16 out of 25 WM tracts of interest (Cohen's d between 0.12 and 0.26). The largest differences were observed in the corpus callosum and corona radiata. Widespread higher radial diffusivity (RD) was also observed (all Cohen's d between 0.12 and 0.18). Findings appeared to be driven by patients with recurrent MDD and an adult age of onset of depression. White matter microstructural differences in a smaller sample of adolescent MDD patients and controls did not survive correction for multiple testing. In this coordinated and harmonized multisite DTI study, we showed subtle, but widespread differences in WM microstructure in adult MDD, which may suggest structural disconnectivity in MDD.


Asunto(s)
Trastorno Depresivo Mayor/patología , Sustancia Blanca/patología , Adulto , Anciano , Anciano de 80 o más Años , Anisotropía , Estudios de Cohortes , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Trastorno Depresivo Mayor/diagnóstico por imagen , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
7.
Brain ; 143(6): 1946-1956, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32385498

RESUMEN

Major depressive disorder is a leading cause of disability and significant mortality, yet mechanistic understanding remains limited. Over the past decade evidence has accumulated from case-control studies that depressive illness is associated with blunted reward activation in the basal ganglia and other regions such as the medial prefrontal cortex. However it is unclear whether this finding can be replicated in a large number of subjects. The functional anatomy of the medial prefrontal cortex and basal ganglia has been extensively studied and the former has excitatory glutamatergic projections to the latter. Reduced effect of glutamatergic projections from the prefrontal cortex to the nucleus accumbens has been argued to underlie motivational disorders such as depression, and many prominent theories of major depressive disorder propose a role for abnormal cortico-limbic connectivity. However, it is unclear whether there is abnormal reward-linked effective connectivity between the medial prefrontal cortex and basal ganglia related to depression. While resting state connectivity abnormalities have been frequently reported in depression, it has not been possible to directly link these findings to reward-learning studies. Here, we tested two main hypotheses. First, mood symptoms are associated with blunted striatal reward prediction error signals in a large community-based sample of recovered and currently ill patients, similar to reports from a number of studies. Second, event-related directed medial prefrontal cortex to basal ganglia effective connectivity is abnormally increased or decreased related to the severity of mood symptoms. Using a Research Domain Criteria approach, data were acquired from a large community-based sample of subjects who participated in a probabilistic reward learning task during event-related functional MRI. Computational modelling of behaviour, model-free and model-based functional MRI, and effective connectivity dynamic causal modelling analyses were used to test hypotheses. Increased depressive symptom severity was related to decreased reward signals in areas which included the nucleus accumbens in 475 participants. Decreased reward-related effective connectivity from the medial prefrontal cortex to striatum was associated with increased depressive symptom severity in 165 participants. Decreased striatal activity may have been due to decreased cortical to striatal connectivity consistent with glutamatergic and cortical-limbic related theories of depression and resulted in reduced direct pathway basal ganglia output. Further study of basal ganglia pathophysiology is required to better understand these abnormalities in patients with depressive symptoms and syndromes.


Asunto(s)
Depresión/fisiopatología , Corteza Prefrontal/fisiopatología , Adulto , Afecto/fisiología , Ganglios Basales/fisiopatología , Mapeo Encefálico/métodos , Biología Computacional/métodos , Conectoma/métodos , Cuerpo Estriado/fisiopatología , Trastorno Depresivo Mayor/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Modelos Teóricos , Motivación , Núcleo Accumbens/fisiopatología , Corteza Prefrontal/metabolismo , Recompensa
8.
Cereb Cortex ; 30(7): 4121-4139, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32198502

RESUMEN

We have carried out meta-analyses of genome-wide association studies (GWAS) (n = 23 784) of the first two principal components (PCs) that group together cortical regions with shared variance in their surface area. PC1 (global) captured variations of most regions, whereas PC2 (visual) was specific to the primary and secondary visual cortices. We identified a total of 18 (PC1) and 17 (PC2) independent loci, which were replicated in another 25 746 individuals. The loci of the global PC1 included those associated previously with intracranial volume and/or general cognitive function, such as MAPT and IGF2BP1. The loci of the visual PC2 included DAAM1, a key player in the planar-cell-polarity pathway. We then tested associations with occupational aptitudes and, as predicted, found that the global PC1 was associated with General Learning Ability, and the visual PC2 was associated with the Form Perception aptitude. These results suggest that interindividual variations in global and regional development of the human cerebral cortex (and its molecular architecture) cascade-albeit in a very limited manner-to behaviors as complex as the choice of one's occupation.


Asunto(s)
Aptitud/fisiología , Selección de Profesión , Corteza Cerebral/crecimiento & desarrollo , Percepción de Forma/genética , Corteza Visual/crecimiento & desarrollo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Grosor de la Corteza Cerebral , Femenino , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Proteínas de Microfilamentos/genética , Persona de Mediana Edad , Análisis de Componente Principal , Proteínas de Unión al ARN/genética , Transcriptoma , Adulto Joven , Proteínas de Unión al GTP rho/genética , Proteínas tau/genética
9.
Hum Brain Mapp ; 41(13): 3555-3566, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32415917

RESUMEN

The use of machine learning (ML) algorithms has significantly increased in neuroscience. However, from the vast extent of possible ML algorithms, which one is the optimal model to predict the target variable? What are the hyperparameters for such a model? Given the plethora of possible answers to these questions, in the last years, automated ML (autoML) has been gaining attention. Here, we apply an autoML library called Tree-based Pipeline Optimisation Tool (TPOT) which uses a tree-based representation of ML pipelines and conducts a genetic programming-based approach to find the model and its hyperparameters that more closely predicts the subject's true age. To explore autoML and evaluate its efficacy within neuroimaging data sets, we chose a problem that has been the focus of previous extensive study: brain age prediction. Without any prior knowledge, TPOT was able to scan through the model space and create pipelines that outperformed the state-of-the-art accuracy for Freesurfer-based models using only thickness and volume information for anatomical structure. In particular, we compared the performance of TPOT (mean absolute error [MAE]: 4.612 ± .124 years) and a relevance vector regression (MAE 5.474 ± .140 years). TPOT also suggested interesting combinations of models that do not match the current most used models for brain prediction but generalise well to unseen data. AutoML showed promising results as a data-driven approach to find optimal models for neuroimaging applications.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Modelos Teóricos , Neuroimagen/métodos , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Conjuntos de Datos como Asunto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
10.
Hum Brain Mapp ; 41(14): 3922-3937, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32558996

RESUMEN

Major depressive disorder (MDD) has been the subject of many neuroimaging case-control classification studies. Although some studies report accuracies ≥80%, most have investigated relatively small samples of clinically-ascertained, currently symptomatic cases, and did not attempt replication in larger samples. We here first aimed to replicate previously reported classification accuracies in a small, well-phenotyped community-based group of current MDD cases with clinical interview-based diagnoses (from STratifying Resilience and Depression Longitudinally cohort, 'STRADL'). We performed a set of exploratory predictive classification analyses with measures related to brain morphometry and white matter integrity. We applied three classifier types-SVM, penalised logistic regression or decision tree-either with or without optimisation, and with or without feature selection. We then determined whether similar accuracies could be replicated in a larger independent population-based sample with self-reported current depression (UK Biobank cohort). Additional analyses extended to lifetime MDD diagnoses-remitted MDD in STRADL, and lifetime-experienced MDD in UK Biobank. The highest cross-validation accuracy (75%) was achieved in the initial current MDD sample with a decision tree classifier and cortical surface area features. The most frequently selected decision tree split variables included surface areas of bilateral caudal anterior cingulate, left lingual gyrus, left superior frontal, right precentral and paracentral regions. High accuracy was not achieved in the larger samples with self-reported current depression (53.73%), with remitted MDD (57.48%), or with lifetime-experienced MDD (52.68-60.29%). Our results indicate that high predictive classification accuracies may not immediately translate to larger samples with broader criteria for depression, and may not be robust across different classification approaches.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/normas , Neuroimagen/normas , Sustancia Blanca/diagnóstico por imagen , Adulto , Anciano , Corteza Cerebral/patología , Estudios de Cohortes , Conjuntos de Datos como Asunto , Trastorno Depresivo Mayor/patología , Imagen de Difusión por Resonancia Magnética/normas , Femenino , Sustancia Gris/patología , Humanos , Masculino , Persona de Mediana Edad , Inducción de Remisión , Sensibilidad y Especificidad , Sustancia Blanca/patología
11.
Psychol Med ; 50(10): 1653-1662, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31317844

RESUMEN

BACKGROUND: Substantial clinical heterogeneity of major depressive disorder (MDD) suggests it may group together individuals with diverse aetiologies. Identifying distinct subtypes should lead to more effective diagnosis and treatment, while providing more useful targets for further research. Genetic and clinical overlap between MDD and schizophrenia (SCZ) suggests an MDD subtype may share underlying mechanisms with SCZ. METHODS: The present study investigated whether a neurobiologically distinct subtype of MDD could be identified by SCZ polygenic risk score (PRS). We explored interactive effects between SCZ PRS and MDD case/control status on a range of cortical, subcortical and white matter metrics among 2370 male and 2574 female UK Biobank participants. RESULTS: There was a significant SCZ PRS by MDD interaction for rostral anterior cingulate cortex (RACC) thickness (ß = 0.191, q = 0.043). This was driven by a positive association between SCZ PRS and RACC thickness among MDD cases (ß = 0.098, p = 0.026), compared to a negative association among controls (ß = -0.087, p = 0.002). MDD cases with low SCZ PRS showed thinner RACC, although the opposite difference for high-SCZ-PRS cases was not significant. There were nominal interactions for other brain metrics, but none remained significant after correcting for multiple comparisons. CONCLUSIONS: Our significant results indicate that MDD case-control differences in RACC thickness vary as a function of SCZ PRS. Although this was not the case for most other brain measures assessed, our specific findings still provide some further evidence that MDD in the presence of high genetic risk for SCZ is subtly neurobiologically distinct from MDD in general.


Asunto(s)
Trastorno Depresivo Mayor/genética , Predisposición Genética a la Enfermedad/genética , Giro del Cíngulo/patología , Herencia Multifactorial/genética , Esquizofrenia/genética , Anciano , Estudios de Casos y Controles , Trastorno Depresivo Mayor/psicología , Imagen de Difusión Tensora , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Factores de Riesgo , Psicología del Esquizofrénico , Reino Unido
12.
Bipolar Disord ; 22(2): 155-162, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31724284

RESUMEN

OBJECTIVES: Current research suggests significant disruptions in functional brain networks in individuals with mood disorder, and in those at familial risk. Studies of structural brain networks provide important insights into synchronized maturational change but have received less attention. We aimed to investigate developmental relationships of large-scale brain networks in mood disorder using structural covariance (SC) analyses. METHODS: We conducted SC analysis of baseline structural imaging data from 121 at the time of scanning unaffected high risk (HR) individuals (29 later developed mood disorder after a median time of 4.95 years), and 89 healthy controls (C-well) with no familial risk from the Scottish Bipolar Family Study (age 15-27, 64% female). Voxel-wise analyses of covariance were conducted to compare the associations between each seed region in visual, auditory, motor, speech, semantic, executive-control, salience and default-mode networks and the whole brain signal. SC maps were compared for (a) HR(all) versus C-well individuals, and (b) between those who remained well (HR-well), versus those who subsequently developed mood disorder (HR-MD), and C-well. RESULTS: There were no significant differences between HR(all) and C-well individuals. On splitting the HR group based on subsequent clinical outcome, the HR-MD group however displayed greater baseline SC in the salience and executive-control network, and HR-well individuals showed less SC in the salience network, compared to C-well, respectively (P < .001). CONCLUSIONS: These findings indicate differences in network-level inter-regional relationships, especially within the salience network, which precede onset of mood disorder in those at familial risk.


Asunto(s)
Trastorno Bipolar/genética , Trastorno Bipolar/fisiopatología , Trastornos del Humor/genética , Trastornos del Humor/fisiopatología , Adolescente , Encéfalo/fisiopatología , Mapeo Encefálico/métodos , Función Ejecutiva , Femenino , Predisposición Genética a la Enfermedad , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiopatología
13.
Intelligence ; 78: 101407, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31983789

RESUMEN

Fluctuating body asymmetry is theorized to indicate developmental instability, and to have small positive associations with low socioeconomic status (SES). Previous studies have reported small negative associations between fluctuating body asymmetry and cognitive functioning, but relationships between fluctuating brain asymmetry and cognitive functioning remain unclear. The present study investigated the association between general intelligence (a latent factor derived from a factor analysis on 13 cognitive tests) and the fluctuating asymmetry of four structural measures of brain hemispheric asymmetry: cortical surface area, cortical volume, cortical thickness, and white matter fractional anisotropy. The sample comprised members of the Lothian Birth Cohort 1936 (LBC1936, N = 636, mean age = 72.9 years). Two methods were used to calculate structural hemispheric asymmetry: in the first method, regions contributed equally to the overall asymmetry score; in the second method, regions contributed proportionally to their size. When regions contributed equally, cortical thickness asymmetry was negatively associated with general intelligence (ß = -0.18,p < .001). There was no association between cortical thickness asymmetry and childhood SES, suggesting that other mechanisms are involved in the thickness asymmetry-intelligence association. Across all cortical metrics, asymmetry of regions identified by the parieto-frontal integration theory (P-FIT) was not more strongly associated with general intelligence than non-P-FIT asymmetry. When regions contributed proportionally, there were no associations between general intelligence and any of the asymmetry measures. The implications of these findings, and of different methods of calculating structural hemispheric asymmetry, are discussed.

14.
Eur Heart J ; 40(28): 2290-2300, 2019 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-30854560

RESUMEN

AIMS: Several factors are known to increase risk for cerebrovascular disease and dementia, but there is limited evidence on associations between multiple vascular risk factors (VRFs) and detailed aspects of brain macrostructure and microstructure in large community-dwelling populations across middle and older age. METHODS AND RESULTS: Associations between VRFs (smoking, hypertension, pulse pressure, diabetes, hypercholesterolaemia, body mass index, and waist-hip ratio) and brain structural and diffusion MRI markers were examined in UK Biobank (N = 9722, age range 44-79 years). A larger number of VRFs was associated with greater brain atrophy, lower grey matter volume, and poorer white matter health. Effect sizes were small (brain structural R2 ≤1.8%). Higher aggregate vascular risk was related to multiple regional MRI hallmarks associated with dementia risk: lower frontal and temporal cortical volumes, lower subcortical volumes, higher white matter hyperintensity volumes, and poorer white matter microstructure in association and thalamic pathways. Smoking pack years, hypertension and diabetes showed the most consistent associations across all brain measures. Hypercholesterolaemia was not uniquely associated with any MRI marker. CONCLUSION: Higher levels of VRFs were associated with poorer brain health across grey and white matter macrostructure and microstructure. Effects are mainly additive, converging upon frontal and temporal cortex, subcortical structures, and specific classes of white matter fibres. Though effect sizes were small, these results emphasize the vulnerability of brain health to vascular factors even in relatively healthy middle and older age, and the potential to partly ameliorate cognitive decline by addressing these malleable risk factors.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/patología , Trastornos Cerebrovasculares/epidemiología , Imagen por Resonancia Magnética , Adulto , Anciano , Bancos de Muestras Biológicas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Reino Unido
15.
Cereb Cortex ; 28(8): 2959-2975, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29771288

RESUMEN

Sex differences in the human brain are of interest for many reasons: for example, there are sex differences in the observed prevalence of psychiatric disorders and in some psychological traits that brain differences might help to explain. We report the largest single-sample study of structural and functional sex differences in the human brain (2750 female, 2466 male participants; mean age 61.7 years, range 44-77 years). Males had higher raw volumes, raw surface areas, and white matter fractional anisotropy; females had higher raw cortical thickness and higher white matter tract complexity. There was considerable distributional overlap between the sexes. Subregional differences were not fully attributable to differences in total volume, total surface area, mean cortical thickness, or height. There was generally greater male variance across the raw structural measures. Functional connectome organization showed stronger connectivity for males in unimodal sensorimotor cortices, and stronger connectivity for females in the default mode network. This large-scale study provides a foundation for attempts to understand the causes and consequences of sex differences in adult brain structure and function.


Asunto(s)
Bancos de Muestras Biológicas , Mapeo Encefálico , Encéfalo/fisiología , Caracteres Sexuales , Adulto , Anciano , Bancos de Muestras Biológicas/estadística & datos numéricos , Encéfalo/diagnóstico por imagen , Planificación en Salud Comunitaria , Conectoma , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Oxígeno/sangre , Descanso , Reino Unido , Sustancia Blanca/diagnóstico por imagen
17.
Stress ; 20(2): 140-148, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28140738

RESUMEN

The glucocorticoid hypothesis suggests that overexposure to stress may cause permanent upregulation of cortisol. Stress in youth may therefore influence cortisol levels even in older age. Using data from the 6-Day Sample, we investigated the effects of high stress in childhood, adolescence and early adulthood - as well as individual variables contributing to these measures; parental loss, social deprivation, school and home moves, illness, divorce and job instability - upon cortisol levels at age 77 years. Waking, waking +45 min (peak) and evening salivary cortisol samples were collected from 159 participants, and the 150 who were not using steroid medications were included in this study. After correcting for multiple comparisons, the only significant association was between early-adulthood job instability and later-life peak cortisol levels. After excluding participants with dementia or possible mild cognitive impairment, early-adulthood high stress showed significant associations with lower evening and mean cortisol levels, suggesting downregulation by stress, but these results did not survive correction for multiple comparisons. Overall, our results do not provide strong evidence of a relationship between stress in youth and later-life cortisol levels, but do suggest that some more long-term stressors, such as job instability, may indeed produce lasting upregulation of cortisol, persisting into the mid-to-late seventies.


Asunto(s)
Divorcio/psicología , Empleo/psicología , Hidrocortisona/análisis , Aislamiento Social , Estrés Psicológico/fisiopatología , Adolescente , Anciano , Ritmo Circadiano/fisiología , Femenino , Estado de Salud , Humanos , Masculino , Saliva/química , Estrés Psicológico/psicología
18.
Hippocampus ; 26(2): 185-93, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26235141

RESUMEN

Flexible spatial navigation, e.g. the ability to take novel shortcuts, is contingent upon accurate mental representations of environments-cognitive maps. These cognitive maps critically depend on hippocampal place cells. In rodents, place cells replay recently travelled routes, especially during periods of behavioural inactivity (sleep/wakeful rest). This neural replay is hypothesised to promote not only the consolidation of specific experiences, but also their wider integration, e.g. into accurate cognitive maps. In humans, rest promotes the consolidation of specific experiences, but the effect of rest on the wider integration of memories remained unknown. In the present study, we examined the hypothesis that cognitive map formation is supported by rest-related integration of new spatial memories. We predicted that if wakeful rest supports cognitive map formation, then rest should enhance knowledge of overarching spatial relations that were never experienced directly during recent navigation. Forty young participants learned a route through a virtual environment before either resting wakefully or engaging in an unrelated perceptual task for 10 min. Participants in the wakeful rest condition performed more accurately in a delayed cognitive map test, requiring the pointing to landmarks from a range of locations. Importantly, the benefit of rest could not be explained by active rehearsal, but can be attributed to the promotion of consolidation-related activity. These findings (i) resonate with the demonstration of hippocampal replay in rodents, and (ii) provide the first evidence that wakeful rest can improve the integration of new spatial memories in humans, a function that has, hitherto, been associated with sleep.


Asunto(s)
Cognición/fisiología , Descanso/fisiología , Memoria Espacial/fisiología , Navegación Espacial/fisiología , Vigilia/fisiología , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Adulto Joven
19.
BMC Geriatr ; 16(1): 167, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27681526

RESUMEN

BACKGROUND: Intelligence is related to both height and body mass index (BMI) at various stages of life. Several studies have demonstrated longitudinal relationships between these measures, but none has established whether height and intelligence, or BMI and intelligence are linked from childhood through to older age. METHODS: We assessed the relations between these measures over an interval of up to 67 years using data from the 36-Day Sample, an initially-representative sample of Scottish people born in 1936, assessed at age 11 years (N = 6,291) and again at 77-78 years (N = 722). This paper focuses on the 423 participants (6.7 % of the original sample) who provided relevant data in late adulthood. RESULTS: Height and intelligence were significantly positively associated in childhood (ß = .23) and late adulthood (ß = .21-.29). Longitudinal correlations also showed that childhood intelligence predicted late-adulthood height (ß = .20), and childhood height predicted late-adulthood cognitive ability (ß = .12-.14). We observed no significant relationship between BMI and intelligence either in childhood or in late adulthood, nor any longitudinal association between the two in this sample. CONCLUSIONS: Our results on height and intelligence are the first to demonstrate that their relationship spans almost seven decades, from childhood through to late adulthood, and they call for further investigation into the mechanisms underlying this lifelong association.

20.
Soc Psychiatry Psychiatr Epidemiol ; 51(5): 659-68, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26880008

RESUMEN

PURPOSE: Psychological resilience, the ability to manage and quickly recover from stress and trauma, is associated with a range of health and wellbeing outcomes. Resilience is known to relate to personality, self-esteem and positive affect, and may also depend upon childhood experience and stress. In this study, we investigated the role of early-life contributors to resilience and related factors in later life. METHODS: We used data from the 6-day sample of the Scottish mental survey 1947, an initially representative sample of Scottish children born in 1936. They were assessed on a range of factors between the ages of 11 and 27 years, and resilience and other outcomes at 77 years. RESULTS: Higher adolescent dependability unexpectedly predicted lower resilience in older-age, as did childhood illnesses, while a count of specific stressors experienced throughout early life significantly predicted higher later-life resilience. We also observed significant cross-sectional correlations between resilience and measures of physical health, mental health, wellbeing and loneliness. Some of the associations between early-life predictors and later-life outcomes were significantly mediated by resilience. CONCLUSIONS: Our results support the hypothesis that stress throughout early life may help to build resilience in later-life, and demonstrate the importance of resilience as a mediator of other influences on health and wellbeing in older age. We suggest that the mechanisms determining how early-life stress leads to higher resilience are worthy of further investigation, and that psychological resilience should be a focus of research and a target for therapeutic interventions aiming to improve older-age health and wellbeing.


Asunto(s)
Trastornos Mentales/diagnóstico , Trastornos Mentales/epidemiología , Resiliencia Psicológica , Medición de Riesgo/estadística & datos numéricos , Adolescente , Adulto , Anciano , Carácter , Niño , Estudios Transversales , Femenino , Encuestas Epidemiológicas , Humanos , Acontecimientos que Cambian la Vida , Estudios Longitudinales , Masculino , Trastornos Mentales/psicología , Persona de Mediana Edad , Escocia , Autoimagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA