Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Eng ; 58(5)2019.
Artículo en Inglés | MEDLINE | ID: mdl-34531618

RESUMEN

We describe the design and ground-based performance of the two-color calibration lamp for the Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI) instrument on the NASA Ionospheric Connection (ICON) satellite. The calibration lamp assembly contains radio frequency excited krypton and neon lamps, which generate emission lines at 557 and 630 nm, respectively, and which are used to monitor thermal drifts in the two MIGHTI Doppler asymmetric spatial heterodyne interferometers. The lamps are coupled to two mixed optical fiber bundles that deliver the calibration signals to the two MIGHTI optical units. The assembly starts reliably, consumes <8 W, and has passed environmental testing for the ICON satellite. The total mass of the lamp assembly is 1.8 kg. Special features of the assembly and its implementation are described along with results of life tests.

2.
Space Sci Rev ; 212(1-2): 553-584, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30008488

RESUMEN

The Michelson Interferometer for Global High-resolution imaging of the Thermosphere and Ionosphere (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90km and 300km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth's limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0nm and 557.7nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA