Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Oral Pathol Med ; 48(5): 389-399, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30825343

RESUMEN

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a deadly disease with a mere 40% five-year survival rate for patients with advanced disease. Previously, we discovered that capsazepine (CPZ), a transient receptor potential channel, Vanilloid subtype 1 (TRPV1) antagonist, has significant anti-tumor effects against OSCC via a unique mechanism-of-action that is independent of TRPV1. Thus, we developed novel CPZ analogs with more potent anti-proliferative effects (CIDD-24, CIDD-99, and CIDD-111). METHODS: Using OSCC xenograft models, we determined the efficacy of these analogs in vivo. TRPV1 interactions were evaluated using calcium imaging and a rat model of orofacial pain. Anti-cancer mechanism(s)-of-action were assessed by cell cycle analysis and mitochondrial depolarization assays. RESULTS: CIDD-99 was the most potent analog demonstrating significant anti-tumor effects in vivo (P < 0.001). CIDD-24 was equipotent to the parent compound CPZ, but less potent than CIDD-99. CIDD-111 was the least efficacious analog. Calcium imaging studies confirmed that CIDD-99 neither activates nor inhibits TRPV1 confirming that TRPV1 activity is not involved in its anti-cancer effects. All analogs induced an S-phase block, dose-dependent mitochondrial depolarization, and apoptosis. Histological analyses revealed increased apoptosis and reduced cell proliferation in tumors treated with these analogs. Importantly, CIDD-99 had the most dramatic anti-tumor effects with 85% of tumors resolving leaving only minute traces of viable tissue. Additionally, CIDD-99 was non-noxious and demonstrated no observable adverse reactions CONCLUSION: This study describes a novel, highly efficacious, CPZ analog, CIDD-99, with dramatic anti-tumor effects against OSCC that may be efficacious as a lone therapy or in combination with standard therapies.


Asunto(s)
Apoptosis , Capsaicina/análogos & derivados , Carcinoma de Células Escamosas/tratamiento farmacológico , Estrés del Retículo Endoplásmico , Isoquinolinas/farmacología , Mitocondrias/efectos de los fármacos , Neoplasias de la Boca/tratamiento farmacológico , Canales Catiónicos TRPV/antagonistas & inhibidores , Animales , Capsaicina/farmacología , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Mitocondrias/patología , Ratas , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Biol Chem ; 292(17): 7173-7188, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28228478

RESUMEN

The transforming growth factor ß isoforms, TGF-ß1, -ß2, and -ß3, are small secreted homodimeric signaling proteins with essential roles in regulating the adaptive immune system and maintaining the extracellular matrix. However, dysregulation of the TGF-ß pathway is responsible for promoting the progression of several human diseases, including cancer and fibrosis. Despite the known importance of TGF-ßs in promoting disease progression, no inhibitors have been approved for use in humans. Herein, we describe an engineered TGF-ß monomer, lacking the heel helix, a structural motif essential for binding the TGF-ß type I receptor (TßRI) but dispensable for binding the other receptor required for TGF-ß signaling, the TGF-ß type II receptor (TßRII), as an alternative therapeutic modality for blocking TGF-ß signaling in humans. As shown through binding studies and crystallography, the engineered monomer retained the same overall structure of native TGF-ß monomers and bound TßRII in an identical manner. Cell-based luciferase assays showed that the engineered monomer functioned as a dominant negative to inhibit TGF-ß signaling with a Ki of 20-70 nm Investigation of the mechanism showed that the high affinity of the engineered monomer for TßRII, coupled with its reduced ability to non-covalently dimerize and its inability to bind and recruit TßRI, enabled it to bind endogenous TßRII but prevented it from binding and recruiting TßRI to form a signaling complex. Such engineered monomers provide a new avenue to probe and manipulate TGF-ß signaling and may inform similar modifications of other TGF-ß family members.


Asunto(s)
Ingeniería de Proteínas/métodos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Transducción de Señal , Factor de Crecimiento Transformador beta/química , Secuencias de Aminoácidos , Animales , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Cinética , Ratones , Unión Proteica , Pliegue de Proteína , Isoformas de Proteínas , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Solubilidad , Resonancia por Plasmón de Superficie , Factor de Crecimiento Transformador beta/metabolismo , Ultracentrifugación
3.
RNA Biol ; 15(11): 1420-1432, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30362859

RESUMEN

RNA binding proteins have emerged as critical oncogenic factors and potential targets in cancer therapy. In this study, we evaluated Musashi1 (Msi1) targeting as a strategy to treat glioblastoma (GBM); the most aggressive brain tumor type. Msi1 expression levels are often high in GBMs and other tumor types and correlate with poor clinical outcome. Moreover, Msi1 has been implicated in chemo- and radio-resistance. Msi1 modulates a range of cancer relevant processes and pathways and regulates the expression of stem cell markers and oncogenic factors via mRNA translation/stability. To identify Msi1 inhibitors capable of blocking its RNA binding function, we performed a ~ 25,000 compound fluorescence polarization screen. NMR and LSPR were used to confirm direct interaction between Msi1 and luteolin, the leading compound. Luteolin displayed strong interaction with Msi1 RNA binding domain 1 (RBD1). As a likely consequence of this interaction, we observed via western and luciferase assays that luteolin treatment diminished Msi1 positive impact on the expression of pro-oncogenic target genes. We tested the effect of luteolin treatment on GBM cells and showed that it reduced proliferation, cell viability, colony formation, migration and invasion of U251 and U343 GBM cells. Luteolin also decreased the proliferation of patient-derived glioma initiating cells (GICs) and tumor-organoids but did not affect normal astrocytes. Finally, we demonstrated the value of combined treatments with luteolin and olaparib (PARP inhibitor) or ionizing radiation (IR). Our results show that luteolin functions as an inhibitor of Msi1 and demonstrates its potential use in GBM therapy.


Asunto(s)
Glioblastoma/tratamiento farmacológico , Luteolina/farmacología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas de Unión al ARN/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Terapia Combinada , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/radioterapia , Humanos , Luteolina/química , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Fenotipo , Ftalazinas/administración & dosificación , Piperazinas/administración & dosificación , ARN/química , ARN/genética , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Radiación Ionizante , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
4.
Biochim Biophys Acta ; 1862(5): 992-1007, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26639036

RESUMEN

Aging is the strongest known risk factor for Alzheimer's disease (AD). With the discovery of the mechanistic target of rapamycin (mTOR) as a critical pathway controlling the rate of aging in mice, molecules at the interface between the regulation of aging and the mechanisms of specific age-associated diseases can be identified. We will review emerging evidence that mTOR-dependent brain vascular dysfunction, a universal feature of aging, may be one of the mechanisms linking the regulation of the rate of aging to the pathogenesis of Alzheimer's disease. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Serina-Treonina Quinasas TOR/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Circulación Cerebrovascular , Humanos , Transducción de Señal
6.
J Neurochem ; 124(6): 880-93, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23121022

RESUMEN

Rapamycin, an inhibitor of target-of-rapamycin, extends lifespan in mice, possibly by delaying aging. We recently showed that rapamycin halts the progression of Alzheimer's (AD)-like deficits, reduces amyloid-beta (Aß) and induces autophagy in the human amyloid precursor protein (PDAPP) mouse model. To delineate the mechanisms by which chronic rapamycin delays AD we determined proteomic signatures in brains of control- and rapamycin-treated PDAPP mice. Proteins with reported chaperone-like activity were overrepresented among proteins up-regulated in rapamycin-fed PDAPP mice and the master regulator of the heat-shock response, heat-shock factor 1, was activated. This was accompanied by the up-regulation of classical chaperones/heat shock proteins (HSPs) in brains of rapamycin-fed PDAPP mice. The abundance of most HSP mRNAs except for alpha B-crystallin, however, was unchanged, and the cap-dependent translation inhibitor 4E-BP was active, suggesting that increased expression of HSPs and proteins with chaperone activity may result from preferential translation of pre-existing mRNAs as a consequence of inhibition of cap-dependent translation. The effects of rapamycin on the reduction of Aß, up-regulation of chaperones, and amelioration of AD-like cognitive deficits were recapitulated by transgenic over-expression of heat-shock factor 1 in PDAPP mice. These results suggest that, in addition to inducing autophagy, rapamycin preserves proteostasis by increasing chaperones. We propose that the failure of proteostasis associated with aging may be a key event enabling AD, and that chronic inhibition of target-of-rapamycin may delay AD by maintaining proteostasis in brain. Read the Editorial Highlight for this article on doi: 10.1111/jnc.12098.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Proteínas de Unión al ADN/biosíntesis , Modelos Animales de Enfermedad , Fenotipo , Sirolimus/administración & dosificación , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Factores de Transcripción/biosíntesis , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/prevención & control , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Factores de Transcripción del Choque Térmico , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Regulación hacia Arriba/genética
7.
Nat Commun ; 14(1): 2367, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185259

RESUMEN

Vascular mechanisms of Alzheimer's disease (AD) may constitute a therapeutically addressable biological pathway underlying dementia. We previously demonstrated that soluble pathogenic forms of tau (tau oligomers) accumulate in brain microvasculature of AD and other tauopathies, including prominently in microvascular endothelial cells. Here we show that soluble pathogenic tau accumulates in brain microvascular endothelial cells of P301S(PS19) mice modeling tauopathy and drives AD-like brain microvascular deficits. Microvascular impairments in P301S(PS19) mice were partially negated by selective removal of pathogenic soluble tau aggregates from brain. We found that similar to trans-neuronal transmission of pathogenic forms of tau, soluble tau aggregates are internalized by brain microvascular endothelial cells in a heparin-sensitive manner and induce microtubule destabilization, block endothelial nitric oxide synthase (eNOS) activation, and potently induce endothelial cell senescence that was recapitulated in vivo in microvasculature of P301S(PS19) mice. Our studies suggest that soluble pathogenic tau aggregates mediate AD-like brain microvascular deficits in a mouse model of tauopathy, which may arise from endothelial cell senescence and eNOS dysfunction triggered by internalization of soluble tau aggregates.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Animales , Proteínas tau/genética , Proteínas tau/metabolismo , Células Endoteliales/metabolismo , Tauopatías/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Senescencia Celular , Ratones Transgénicos
8.
Biochem Biophys Res Commun ; 425(2): 413-8, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22846570

RESUMEN

The TOR pathway is a kinase signaling pathway that regulates cellular growth and proliferation in response to nutrients and growth factors. TOR signaling is also important in lifespan regulation - when this pathway is inhibited, either naturally, by genetic mutation, or by pharmacological means, lifespan is extended. MAP4K3 is a Ser/Thr kinase that has recently been found to be involved in TOR activation. Unexpectedly, the effect of this protein is not mediated via Rheb, the more widely known TOR activation pathway. Given the role of TOR in growth and lifespan control, we looked at how inhibiting MAP4K3 in Caenorhabditis elegans affects lifespan. We used both feeding RNAi and genetic mutants to look at the effect of MAP4K3 deficiency. Our results show a small but significant increase in mean lifespan in MAP4K3 deficient worms. MAP4K3 thus represents a new target in the TOR pathway that can be targeted for pharmacological intervention to control lifespan.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Longevidad/genética , Proteínas Serina-Treonina Quinasas/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Técnicas de Inactivación de Genes , Datos de Secuencia Molecular , Mutación , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Eliminación de Secuencia
9.
Anal Biochem ; 421(2): 467-76, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22178911

RESUMEN

Caspases, effectors of apoptosis, are key mediators of neuronal death in several neurodegenerative diseases. Caspase-8 and caspase-6 have been implicated in the pathogenesis of amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, and Alzheimer's disease (AD). ß-Amyloid precursor protein (APP) is cleaved at Asp664 in its intracellular domain by caspase-8. We and other laboratories recently showed that obliteration of the caspase cleavage site on APP alleviates functional AD-like deficits in a mouse model. Therefore, caspase cleavage of APP constitutes a potential novel target for therapeutic intervention. To identify chemical inhibitors of caspase-8 cleavage, we screened a subset of the chemical library at the Harvard NeuroDiscovery Center's Laboratory for Drug Discovery in Neurodegeneration. We show that caspase-8, but not caspase-1, -3, or -9, cleaves a biotinylated peptide derived from APP at Asp664, and we report the development of a sensitive high-throughput assay for caspase-8 cleavage of APP and the use of that assay for the identification of specific small molecule "hit" compounds that potently inhibit Asp664 cleavage of APP. Furthermore, we demonstrate that one of these compounds (LDN-0021835) inhibits the cleavage of APP at Asp664 in cell-based assays.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Caspasa 8/metabolismo , Ensayos Analíticos de Alto Rendimiento , Secuencia de Aminoácidos , Western Blotting , Humanos , Datos de Secuencia Molecular , Proteolisis
10.
Aging Cell ; 19(1): e13057, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31693798

RESUMEN

Cerebrovascular dysfunction and cognitive decline are highly prevalent in aging, but the mechanisms underlying these impairments are unclear. Cerebral blood flow decreases with aging and is one of the earliest events in the pathogenesis of Alzheimer's disease (AD). We have previously shown that the mechanistic/mammalian target of rapamycin (mTOR) drives disease progression in mouse models of AD and in models of cognitive impairment associated with atherosclerosis, closely recapitulating vascular cognitive impairment. In the present studies, we sought to determine whether mTOR plays a role in cerebrovascular dysfunction and cognitive decline during normative aging in rats. Using behavioral tools and MRI-based functional imaging, together with biochemical and immunohistochemical approaches, we demonstrate that chronic mTOR attenuation with rapamycin ameliorates deficits in learning and memory, prevents neurovascular uncoupling, and restores cerebral perfusion in aged rats. Additionally, morphometric and biochemical analyses of hippocampus and cortex revealed that mTOR drives age-related declines in synaptic and vascular density during aging. These data indicate that in addition to mediating AD-like cognitive and cerebrovascular deficits in models of AD and atherosclerosis, mTOR drives cerebrovascular, neuronal, and cognitive deficits associated with normative aging. Thus, inhibitors of mTOR may have potential to treat age-related cerebrovascular dysfunction and cognitive decline. Since treatment of age-related cerebrovascular dysfunction in older adults is expected to prevent further deterioration of cerebral perfusion, recently identified as a biomarker for the very early (preclinical) stages of AD, mTOR attenuation may potentially block the initiation and progression of AD.


Asunto(s)
Envejecimiento/genética , Circulación Cerebrovascular/fisiología , Disfunción Cognitiva/fisiopatología , Serina-Treonina Quinasas TOR/genética , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratas
11.
Artículo en Inglés | MEDLINE | ID: mdl-26306821

RESUMEN

BACKGROUND: Synucleinopathy is any of a group of age-related neurodegenerative disorders including Parkinson's disease, multiple system atrophy, and dementia with Lewy Bodies, which is characterized by α-synuclein inclusions and parkinsonian motor deficits affecting millions of patients worldwide. But there is no cure at present for synucleinopathy. Rapamycin has been shown to be neuroprotective in several in vitro and in vivo synucleinopathy models. However, there are no reports on the long-term effects of RAPA on motor function or measures of neurodegeneration in models of synucleinopathy. METHODS: We determined whether long-term feeding a rapamycin diet (14 ppm in diet; 2.25 mg/kg body weight/day) improves motor function in neuronal A53T α-synuclein transgenic mice (TG) and explored underlying mechanisms using a variety of behavioral and biochemical approaches. RESULTS: After 24 weeks of treatment, rapamycin improved performance on the forepaw stepping adjustment test, accelerating rotarod and pole test. Rapamycin did not alter A53T α-synuclein content. There was no effect of rapamycin treatment on midbrain or striatal monoamines or their metabolites. Proteins adducted to the lipid peroxidation product 4-hydroxynonenal were decreased in brain regions of both wild-type and TG mice treated with rapamycin. Reduced levels of the presynaptic marker synaptophysin were found in several brain regions of TG mice. Rapamycin attenuated the loss of synaptophysin protein in the affected brain regions. Rapamycin also attenuated the loss of synaptophysin protein and prevented the decrease of neurite length in SH-SY5Y cells treated with 4-hydroxynonenal. CONCLUSION: Taken together, these data suggest that rapamycin, an FDA approved drug, may prove useful in the treatment of synucleinopathy.

12.
J Alzheimers Dis ; 40(3): 605-617, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24531152

RESUMEN

An unbiased screen for compounds that block amyloid-ß protein precursor (AßPP) caspase cleavage identified ADDN-1351, which reduced AßPP-C31 by 90%. Target identification studies showed that ADDN-1351 is a TrkA inhibitor, and, in complementary studies, TrkA overexpression increased AßPP-C31 and cell death. TrkA was shown to interact with AßPP and suppress AßPP-mediated transcriptional activation. Moreover, treatment of PDAPP transgenic mice with the known TrkA inhibitor GW441756 increased sAßPPα and the sAßPPα to Aß ratio. These results suggest TrkA inhibition-rather than NGF activation-as a novel therapeutic approach, and raise the possibility that such an approach may counteract the hyperactive signaling resulting from the accumulation of active NGF-TrkA complexes due to reduced retrograde transport. The results also suggest that one component of an optimal therapy for Alzheimer's disease may be a TrkA inhibitor.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor trkA/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Benzamidas/farmacología , Células CHO , Muerte Celular/efectos de los fármacos , Cricetulus , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Mutación/genética , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/farmacología , Inhibidores de Proteínas Quinasas/química , Pirazoles/farmacología , Receptor trkA/antagonistas & inhibidores , Receptor trkA/genética , Transfección
13.
J Cereb Blood Flow Metab ; 33(9): 1412-21, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23801246

RESUMEN

Vascular pathology is a major feature of Alzheimer's disease (AD) and other dementias. We recently showed that chronic administration of the target-of-rapamycin (TOR) inhibitor rapamycin, which extends lifespan and delays aging, halts the progression of AD-like disease in transgenic human (h)APP mice modeling AD when administered before disease onset. Here we demonstrate that chronic reduction of TOR activity by rapamycin treatment started after disease onset restored cerebral blood flow (CBF) and brain vascular density, reduced cerebral amyloid angiopathy and microhemorrhages, decreased amyloid burden, and improved cognitive function in symptomatic hAPP (AD) mice. Like acetylcholine (ACh), a potent vasodilator, acute rapamycin treatment induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO release in brain endothelium. Administration of the NOS inhibitor L-NG-Nitroarginine methyl ester reversed vasodilation as well as the protective effects of rapamycin on CBF and vasculature integrity, indicating that rapamycin preserves vascular density and CBF in AD mouse brains through NOS activation. Taken together, our data suggest that chronic reduction of TOR activity by rapamycin blocked the progression of AD-like cognitive and histopathological deficits by preserving brain vascular integrity and function. Drugs that inhibit the TOR pathway may have promise as a therapy for AD and possibly for vascular dementias.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antibacterianos/farmacología , Encéfalo/metabolismo , Memoria/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Sirolimus/farmacología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/biosíntesis , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/patología , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Inhibidores Enzimáticos/farmacología , Humanos , Ratones , Ratones Transgénicos , Óxido Nítrico/biosíntesis , Óxido Nítrico/genética , Óxido Nítrico Sintasa de Tipo III/genética , Nitroarginina/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Vasodilatación/efectos de los fármacos , Vasodilatación/genética
14.
Aging Dis ; 2(1): 18-29, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21874159

RESUMEN

Transplantation of embryonic stem cell (ESC)-derived precursors holds great promise for treating various disease conditions. Tracing of precursors derived from ESC after transplantation is important to determine their migration and fate. Chemical labeling, as well as transfection or viral-mediated transduction of tracer genes in ESC or in ESC-derived precursors, which are the methods that have been used in the generation of the vast majority of labeled ESCs, have serious drawbacks such as varying efficacy. To circumvent this problem we generated endogenously traceable mouse (m)ESC clones by direct derivation from blastocysts of transgenic mice expressing enhanced green fluorescent protein (EGFP) under control of the housekeeping ß-actin promoter The only previous report of endogenously EGFP-labeled mESC derived directly from transgenic EGFP embryos is that of Ahn and colleagues (Ahn et al, 2008. Cytotherapy 10:759-769), who used embryos from a different transgenic line and used a significantly different protocol for derivation. Cells from a high-expressing EGFP-mESC clone, G11, retain high levels of EGFP expression after differentiation into derivatives of all three primary germ layers both in vitro and in vivo, and contribution to all tissues in chimeric progeny. To determine whether progenitor cells derived from G11 could be used in transplantation experiments, we differentiated them to early neuronal precursors and injected them into syngeneic mouse brains. Transplanted EGFP-expressing cells at different stages of differentiation along the neuronal lineage could be identified in brains by expression of EGFP twelve weeks after transplantation. Our results suggest that the EGFP-mESC(G11) line may constitute a useful tool in ESC-based cell and tissue replacement studies.

15.
PLoS One ; 5(4): e9979, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20376313

RESUMEN

BACKGROUND: Reduced TOR signaling has been shown to significantly increase lifespan in a variety of organisms [1], [2], [3], [4]. It was recently demonstrated that long-term treatment with rapamycin, an inhibitor of the mTOR pathway[5], or ablation of the mTOR target p70S6K[6] extends lifespan in mice, possibly by delaying aging. Whether inhibition of the mTOR pathway would delay or prevent age-associated disease such as AD remained to be determined. METHODOLOGY/PRINCIPAL FINDINGS: We used rapamycin administration and behavioral tools in a mouse model of AD as well as standard biochemical and immunohistochemical measures in brain tissue to provide answers for this question. Here we show that long-term inhibition of mTOR by rapamycin prevented AD-like cognitive deficits and lowered levels of Abeta(42), a major toxic species in AD[7], in the PDAPP transgenic mouse model. These data indicate that inhibition of the mTOR pathway can reduce Abeta(42) levels in vivo and block or delay AD in mice. As expected from the inhibition of mTOR, autophagy was increased in neurons of rapamycin-treated transgenic, but not in non-transgenic, PDAPP mice, suggesting that the reduction in Abeta and the improvement in cognitive function are due in part to increased autophagy, possibly as a response to high levels of Abeta. CONCLUSIONS/SIGNIFICANCE: Our data suggest that inhibition of mTOR by rapamycin, an intervention that extends lifespan in mice, can slow or block AD progression in a transgenic mouse model of the disease. Rapamycin, already used in clinical settings, may be a potentially effective therapeutic agent for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/efectos de los fármacos , Trastornos del Conocimiento/tratamiento farmacológico , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Envejecimiento , Péptidos beta-Amiloides/análisis , Animales , Autofagia , Modelos Animales de Enfermedad , Inmunosupresores , Ratones , Transducción de Señal/efectos de los fármacos , Sirolimus/uso terapéutico
16.
J Biol Chem ; 280(26): 24680-9, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15851471

RESUMEN

The present study was designed to identify novel membrane proteins that signal during platelet aggregation. Because one putative mechanism for signaling by a membrane protein involves phosphorylation, we used oligonucleotide-based microarray analyses and mass spectrometric proteomics techniques to specifically discover membrane proteins and also identify those proteins that become phosphorylated on tyrosine, threonine, or serine residues upon platelet aggregation. Surprisingly, both techniques converged to identify a novel membrane protein we have termed PEAR1 (platelet endothelial aggregation receptor 1). Sequence analysis of PEAR1 predicts a type-1 membrane protein, 15 extracellular epidermal growth factor-like repeats, and multiple cytoplasmic tyrosines. Analysis of the tissue distribution of PEAR1 showed that it was most highly expressed in platelets and endothelial cells. Upon platelet aggregation induced by physiological agonists, PEAR1 became phosphorylated on tyrosine (Tyr-925), and serine (Ser-953 and Ser-1029) residues. PEAR1 tyrosine phosphorylation was blocked by eptifibatide, an alpha(IIb)beta(3) antagonist, which inhibits platelet aggregation. Immune clustering of PEAR1 resulted in PEAR1 phosphorylation. Aggregation-induced PEAR1 tyrosine phosphorylation lead to the subsequent association with the ShcB adaptor protein. Platelet proximity induced by centrifugation also induced PEAR1 tyrosine phosphorylation, a reaction not inhibited by eptifibatide. These data suggest that PEAR1 is a novel platelet receptor that signals secondary to alpha(IIb)beta(3)-mediated platelet-platelet contacts.


Asunto(s)
Plaquetas/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Receptores de Superficie Celular/biosíntesis , Receptores de Superficie Celular/fisiología , Secuencia de Aminoácidos , Animales , Biotina/química , Western Blotting , Células COS , Comunicación Celular , Línea Celular , Clonación Molecular , Reactivos de Enlaces Cruzados/farmacología , Citoplasma/metabolismo , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Células Endoteliales/metabolismo , Eptifibatida , Citometría de Flujo , Humanos , Inmunoprecipitación , Espectrometría de Masas , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Péptidos/química , Péptidos/farmacología , Peroxidasa/química , Fosforilación , Activación Plaquetaria , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/química , Unión Proteica , Estructura Terciaria de Proteína , ARN/metabolismo , ARN Mensajero/metabolismo , Receptores de Superficie Celular/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Serina/química , Transducción de Señal , Treonina/química , Distribución Tisular , Transfección , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA