Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 109(23): 8845-9, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22615387

RESUMEN

Coccolithophores are an important component of the Earth system, and, as calcifiers, their possible susceptibility to ocean acidification is of major concern. Laboratory studies at enhanced pCO(2) levels have produced divergent results without overall consensus. However, it has been predicted from these studies that, although calcification may not be depressed in all species, acidification will produce "a transition in dominance from more to less heavily calcified coccolithophores" [Ridgwell A, et al., (2009) Biogeosciences 6:2611-2623]. A recent observational study [Beaufort L, et al., (2011) Nature 476:80-83] also suggested that coccolithophores are less calcified in more acidic conditions. We present the results of a large observational study of coccolithophore morphology in the Bay of Biscay. Samples were collected once a month for over a year, along a 1,000-km-long transect. Our data clearly show that there is a pronounced seasonality in the morphotypes of Emiliania huxleyi, the most abundant coccolithophore species. Whereas pH and CaCO(3) saturation are lowest in winter, the E. huxleyi population shifts from <10% (summer) to >90% (winter) of the heavily calcified form. However, it is unlikely that the shifts in carbonate chemistry alone caused the morphotype shift. Our finding that the most heavily calcified morphotype dominates when conditions are most acidic is contrary to the earlier predictions and raises further questions about the fate of coccolithophores in a high-CO(2) world.


Asunto(s)
Calcio/análisis , Cambio Climático , Haptophyta/química , Estaciones del Año , Carbonato de Calcio/análisis , Francia , Haptophyta/fisiología , Concentración de Iones de Hidrógeno , Océanos y Mares , Fotosíntesis , Densidad de Población , Comunicaciones por Satélite , Agua de Mar/química
2.
Mar Pollut Bull ; 54(7): 850-62, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17588614

RESUMEN

This study evaluates the ship of opportunity (Ferrybox) concept for both sustained monitoring of UK shelf sea waters and numerical model validation. Release of phosphate from the wreck of a chemical tanker (MV Ece) in the western English Channel (49.73 degrees N, 3.25 degrees W) in March 2006 is used to demonstrate the importance of sustained observations in decision support systems and policy development. The Ferrybox system continuously collects sea surface (5m) data from a suite of autonomous electronic sensors installed on a passenger ferry operating year-round between Portsmouth (UK) and Bilbao (Spain). The detection of anomalously high concentrations of phosphate (1.54mmolm(-3), four times the usual level) and onset of phytoplankton growth close to the wreck site in March 2006 was placed in the context of multiple years of measurements (phosphate, nitrate, silicate and chlorophyll) collected from the Ferrybox system (2003-2006) and the long-term time series station E1 (50.03 degrees N, 4.65 degrees W, 1930-1987) in the English Channel. With regard to decision support, release of phosphate from the tanker is unlikely to pose a threat as phytoplankton growth at the end of winter is not unusual in this region and dissolved inorganic nitrogen rather than phosphate (DIN:DIP=10-18) is likely to ultimately limit algal growth in spring 2006. With regard to policy development, the Oslo and Paris (OSPAR) commissions recommendation of sampling every three years in "non-problem areas" is likely to provide statistically inadequate data, given the interannual and decadal variability identified in the Ferrybox and E1 data: the Ferrybox data show that oceanic winter nutrient concentrations varied by 35-50% between 2003/2004 and 2005/2006 due to deeper mixing of water off-shelf in early 2005/2006 and comparisons between the Ferrybox and E1 years show that the western English Channel is currently experiencing a low in phosphate concentrations similar to those in the 1960s. The importance of Ferrybox data in evaluating the reliability of predictive operational models needed in decision support is also demonstrated, by highlighting both strengths and weaknesses in a state-of-the-art ecosystem model designed for UK shelf waters.


Asunto(s)
Ecosistema , Peces/crecimiento & desarrollo , Biología Marina , Contaminantes Químicos del Agua/toxicidad , Animales , Clorofila/metabolismo , Geografía , Nitratos/análisis , Nitratos/toxicidad , Nitrógeno/análisis , Nitrógeno/metabolismo , Océanos y Mares , Fosfatos/análisis , Fosfatos/toxicidad , Medición de Riesgo , Silicatos/análisis , Silicatos/toxicidad , España , Factores de Tiempo , Reino Unido , Contaminantes Químicos del Agua/análisis , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA