Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L997-L1009, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32936026

RESUMEN

The gasotransmitter carbon monoxide (CO) regulates fluid and electrolyte movements across epithelial tissues. However, its action on anion channels is incompletely understood. Here, we investigate the direct action of CO on the cystic fibrosis transmembrane conductance regulator (CFTR) by applying CO-releasing molecules (CO-RMs) to the intracellular side of excised inside-out membrane patches from cells heterologously expressing wild-type human CFTR. Addition of increasing concentrations of tricarbonyldichlororuthenium(II) dimer (CORM-2) (1-300 µM) inhibited CFTR channel activity, whereas the control RuCl3 (100 µM) was without effect. CORM-2 predominantly inhibited CFTR by decreasing the frequency of channel openings and, hence, open probability (Po). But, it also reduced current flow through open channels with very fast kinetics, particularly at elevated concentrations. By contrast, the chemically distinct CO-releasing molecule CORM-3 inhibited CFTR by decreasing Po without altering current flow through open channels. Neither depolarizing the membrane voltage nor raising the ATP concentration on the intracellular side of the membrane affected CFTR inhibition by CORM-2. Interestingly, CFTR inhibition by CORM-2, but not by CFTRinh-172, was prevented by prior enhancement of channel activity by the clinically approved CFTR potentiator ivacaftor. Similarly, when added after CORM-2, ivacaftor completely relieved CFTR inhibition. In conclusion, CORM-2 has complex effects on wild-type human CFTR consistent with allosteric inhibition and open-channel blockade. Inhibition of CFTR by CO-releasing molecules suggests that CO regulates CFTR activity and that the gasotransmitter has tissue-specific effects on epithelial ion transport. The action of ivacaftor on CFTR Cl- channels inhibited by CO potentially expands the drug's clinical utility.


Asunto(s)
Monóxido de Carbono/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Monóxido de Carbono/metabolismo , Humanos
2.
Biochem Biophys Res Commun ; 523(3): 816-821, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-31954520

RESUMEN

Parathyroid hormone (PTH) enhances cystic fibrosis transmembrane conductance regulator (CFTR)-mediated anion secretion by the human intestinal epithelial cell line Caco-2. With the patch-clamp and Ussing chamber techniques, we investigated how PTH stimulates CFTR activity in Caco-2 cells. Cell-attached recordings revealed that PTH stimulated the opening of CFTR-like channels, while impedance analysis demonstrated that PTH increased apical membrane capacitance, a measure of membrane surface area. Using ion substitution experiments, the PTH-stimulated increase in short-circuit current (Isc), a measure of transepithelial ion transport, was demonstrated to be Cl-- and HCO3--dependent. However, the PTH-stimulated increase in Isc was unaffected by the carbonic anhydrase inhibitor acetazolamide, but partially blocked by the intermediate-conductance Ca2+-activated K+ channel (IKCa) inhibitor clotrimazole. TRAM-34, a related IKCa inhibitor, failed to directly inhibit CFTR Cl- channels in cell-free membrane patches, excluding its action on CFTR. In conclusion, PTH enhances CFTR-mediated anion secretion by Caco-2 monolayers by increasing the expression and function of CFTR in the apical membrane and IKCa activity in the basolateral membrane.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Mucosa Intestinal/metabolismo , Hormona Paratiroidea/metabolismo , Aniones/metabolismo , Células CACO-2 , Regulador de Conductancia de Transmembrana de Fibrosis Quística/análisis , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Mucosa Intestinal/citología , Transporte Iónico , Regulación hacia Arriba
3.
Mol Pharmacol ; 96(1): 115-126, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31048549

RESUMEN

Three small conductance calcium-activated potassium channel (SK) subunits have been cloned and found to preferentially form heteromeric channels when expressed in a heterologous expression system. The original cloning of the gene encoding the intermediate conductance calcium-activated potassium channel (IKCa) was termed SK4 because of the high homology between channel subtypes. Recent immunovisualization suggests that IKCa is expressed in the same subcellular compartments of some neurons as SK channel subunits. Stochastic optical reconstruction microscopy super-resolution microscopy revealed that coexpressed IKCa and SK1 channel subunits were closely associated, a finding substantiated by measurement of fluorescence resonance energy transfer between coexpressed fluorophore-tagged subunits. Expression of homomeric SK1 channels produced current that displayed typical sensitivity to SK channel inhibitors, while expressed IKCa channel current was inhibited by known IKCa channel blockers. Expression of both SK1 and IKCa subunits gave a current that displayed no sensitivity to SK channel inhibitors and a decreased sensitivity to IKCa current inhibitors. Single channel recording indicated that coexpression of SK1 and IKCa subunits produced channels with properties intermediate between those observed for homomeric channels. These data indicate that SK1 and IKCa channel subunits preferentially combine to form heteromeric channels that display pharmacological and biophysical properties distinct from those seen with homomeric channels.


Asunto(s)
Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Complejos Multiproteicos/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Línea Celular , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Microscopía , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA