Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Stroke ; 52(2): 687-698, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33412903

RESUMEN

BACKGROUND AND PURPOSE: Stroke disrupts neuronal functions in both local and remotely connected regions, leading to network-wide deficits that can hinder recovery. The thalamus is particularly affected, with progressive development of neurodegeneration accompanied by inflammatory responses. However, the complexity of the involved inflammatory responses is poorly understood. Herein we investigated the spatiotemporal changes in the secondary degenerative thalamus after cortical stroke, using targeted transcriptome approach in conjunction with histology and flow cytometry. METHODS: Cortical ischemic stroke was generated by permanent occlusion of the left middle cerebral artery in male C57BL6J mice. Neurodegeneration, neuroinflammatory responses, and microglial activation were examined in naive and stroke mice at from poststroke days (PD) 1 to 84, in both ipsilesional somatosensory cortex and ipsilesional thalamus. NanoString neuropathology panel (780 genes) was used to examine transcriptome changes at PD7 and PD28. Fluorescence activated cell sorting was used to collect CD11c+ microglia from ipsilesional thalamus, and gene expressions were validated by quantitative real-time polymerase chain reaction. RESULTS: Neurodegeneration in the thalamus was detected at PD7 and progressively worsened by PD28. This was accompanied by rapid microglial activation detected as early as PD1, which preceded the neurodegenerative changes. Transcriptome analysis showed higher number of differentially expressed genes in ipsilesional thalamus at PD28. Notably, neuroinflammation was the top activated pathway, and microglia was the most enriched cell type. Itgax (CD11c) was the most significantly increased gene, and its expression was highly detected in microglia. Flow-sorted CD11c+ microglia from degenerative thalamus indicated molecular signatures similar to neurodegenerative disease-associated microglia; these included downregulated Tmem119 and CX3CR1 and upregulated ApoE, Axl, LpL, CSF1, and Cst7. CONCLUSIONS: Our findings demonstrate the dynamic changes of microglia after stroke and highlight the importance of investigating stroke network-wide deficits. Importantly, we report the existence of a unique subtype of microglia (CD11c+) with neurodegenerative disease-associated microglia features in the degenerative thalamus after stroke.


Asunto(s)
Corteza Cerebral/patología , Microglía/patología , Enfermedades Neurodegenerativas/patología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/patología , Enfermedades Talámicas/etiología , Enfermedades Talámicas/patología , Animales , Antígenos CD11/química , Circulación Cerebrovascular , Encefalitis/patología , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Somatosensorial/patología , Tálamo/patología , Transcriptoma
2.
Front Neurol ; 11: 236, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32318016

RESUMEN

Stroke is one of the major causes of chronic disability worldwide and increasing efforts have focused on studying brain repair and recovery after stroke. Following stroke, the primary injury site can disrupt functional connections in nearby and remotely connected brain regions, resulting in the development of secondary injuries that may impede long-term functional recovery. In particular, secondary degenerative injury occurs in the connected ipsilesional thalamus following a cortical stroke. Although secondary thalamic injury was first described decades ago, the underlying mechanisms still remain unclear. We performed a systematic literature review using the NCBI PubMed database for studies that focused on the secondary thalamic degeneration after cortical ischemic stroke. In this review, we discussed emerging studies that characterized the pathological changes in the secondary degenerative thalamus after stroke; these included excitotoxicity, apoptosis, amyloid beta protein accumulation, blood-brain-barrier breakdown, and inflammatory responses. In particular, we highlighted key findings of the dynamic inflammatory responses in the secondary thalamic injury and discussed the involvement of several cell types in this process. We also discussed studies that investigated the effects of blocking secondary thalamic injury on inflammatory responses and stroke outcome. Targeting secondary injuries after stroke may alleviate network-wide deficits, and ultimately promote stroke recovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA