Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Small ; 18(50): e2203515, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36307906

RESUMEN

Cell clusters that collectively migrate from primary tumors appear to be far more potent in forming distant metastases than single cancer cells. A better understanding of the collective cell migration phenomenon and the involvement of various cell types during this process is needed. Here, an in vitro platform based on inverted-pyramidal microwells to follow and quantify the collective migration of hundreds of tumor cell clusters at once is developed. These results indicate that mesenchymal stromal cells (MSCs) or cancer-associated fibroblasts (CAFs) in the heterotypic tumor cell clusters may facilitate metastatic dissemination by transporting low-motile cancer cells in a Rac-dependent manner and that extracellular vesicles secreted by mesenchymal cells only play a minor role in this process. Furthermore, in vivo studies show that cancer cell spheroids containing MSCs or CAFs have faster spreading rates. These findings highlight the active role of co-traveling stromal cells in the collective migration of tumor cell clusters and may help in developing better-targeted therapies.


Asunto(s)
Células Madre Mesenquimatosas , Neoplasias , Humanos , Movimiento Celular , Células del Estroma , Neoplasias/patología , Línea Celular Tumoral
2.
Adv Funct Mater ; 30(43)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33708028

RESUMEN

Intramyocardial injection of hydrogels offers great potential for treating myocardial infarction (MI) in a minimally invasive manner. However, traditional bulk hydrogels generally lack microporous structures to support rapid tissue ingrowth and biochemical signals to prevent fibrotic remodeling toward heart failure. To address such challenges, a novel drug-releasing microporous annealed particle (drugMAP) system is developed by encapsulating hydrophobic drug-loaded nanoparticles into microgel building blocks via microfluidic manufacturing. By modulating nanoparticle hydrophilicity and pregel solution viscosity, drugMAP building blocks are generated with consistent and homogeneous encapsulation of nanoparticles. In addition, the complementary effects of forskolin (F) and Repsox (R) on the functional modulations of cardiomyocytes, fibroblasts, and endothelial cells in vitro are demonstrated. After that, both hydrophobic drugs (F and R) are loaded into drugMAP to generate FR/drugMAP for MI therapy in a rat model. The intramyocardial injection of MAP gel improves left ventricular functions, which are further enhanced by FR/drugMAP treatment with increased angiogenesis and reduced fibrosis and inflammatory response. This drugMAP platform represents a new generation of microgel particles for MI therapy and will have broad applications in regenerative medicine and disease therapy.

3.
Nano Lett ; 19(10): 6945-6954, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31478664

RESUMEN

Activation of T cells by antigen presenting cells (APCs) initiates their proliferation, cytokine production, and killing of infected or cancerous cells. We and others have shown that T-cell receptors require mechanical forces for triggering, and these forces arise during the interaction of T cells with APCs. Efficient activation of T cells in vitro is necessary for clinical applications. In this paper, we studied the impact of combining mechanical, oscillatory movements provided by an orbital shaker with soft, biocompatible, artificial APCs (aAPCs) of various sizes and amounts of antigen. We showed that these aAPCs allow for testing the strength of signal delivered to T cells, and enabled us to confirm that that absolute amounts of antigen engaged by the T cell are more important for activation than the density of antigen. We also found that when our aAPCs interact with T cells in the context of an oscillatory mechanoenvironment, they roughly double antigenic signal strength, compared to conventional, static culture. Combining these effects, our aAPCs significantly outperformed the commonly used Dynabeads. We finally demonstrated that tuning the signal strength down to a submaximal "sweet spot" allows for robust expansion of induced regulatory T cells. In conclusion, augmenting engineered aAPCs with mechanical forces offers a novel approach for tuning of T-cell activation and differentiation.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Artificiales/inmunología , Activación de Linfocitos , Linfocitos T/inmunología , Animales , Células Presentadoras de Antígenos/citología , Células Artificiales/citología , Fenómenos Biomecánicos , Células Cultivadas , Humanos , Ratones , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/citología
4.
Artículo en Inglés | MEDLINE | ID: mdl-27515674

RESUMEN

Controlling stem cell (SC) fate is an extremely important topic in the realm of SC research. A variety of different external cues mainly mechanical, chemical, or electrical stimulations individually or in combination have been incorporated to control SC fate. Here, we will deconstruct the probable relationship between the functioning of electromagnetic (EMF) and SC fate of a variety of different SCs. The electromagnetic (EM) nature of the cells is discussed with the emphasis on the effects of EMF on the determinant factors that directly and/or indirectly influence cell fate. Based on the EM effects on a variety of cellular processes, it is believed that EMFs can be engineered to provide a controlled signal with the highest impact on the SC fate decision. Considering the novelty and broad applications of applying EMFs to change SC fate, it is necessary to shed light on many unclear mechanisms underlying this phenomenon.


Asunto(s)
Campos Electromagnéticos , Células Madre/fisiología , Animales , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Campos Electromagnéticos/efectos adversos , Humanos , Mitocondrias/metabolismo , Células Madre/metabolismo , Factores de Transcripción/metabolismo
5.
Langmuir ; 32(19): 4996-5003, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-26938744

RESUMEN

Alginate is a biopolymer with favorable pH-sensitive properties for oral delivery of peptides and proteins. However, conventional alginate nanogels have limitations such as low encapsulation efficiency because of drug leaching during bead preparation and burst release in high pH values. These shortcomings originate from large pore size of the nanogels. In this work, we proposed an on-chip hydrodynamic flow focusing approach for synthesis of alginate nanogels with adjustable pore size to achieve fine-tunable release profile of the encapsulated bioactive agents. It is demonstrated that the microstructure of nanogels can be controlled through adjusting flow ratio and mixing time directed on microfluidic platforms consisting of cross-junction microchannels. In this study, the average pore size of alginate nanogels (i.e., average molecular weight between cross-links, Mc) was related to synthesis parameters. Mc was calculated from equations based on equilibrium swelling theory and proposed methods to modify the theory for pH-sensitive nanogels. In the equations we derived, size and compactness of nanogels are key factors, which can be adjusted by controlling the flow ratio. It was found that increase in flow ratio increases the size of nanogels and decreases their compactness. The size of on-chip generated nanogels for flow ratio of 0.02-0.2 was measured to be in the range of 68-138 nm. Moreover, a method based on the Mie theory was implemented to estimate the aggregation number (Nagg) of polymer chains inside the nanogels as an indicator of compactness. According to the size and compactness results along with equations of modified swelling theory, Mc obtained to be in the range of 0.5-0.8 kDa. The proposed method could be considered as a promising approach for efficient polypeptides encapsulation and their sustained release.


Asunto(s)
Alginatos/química , Técnicas de Química Sintética/instrumentación , Portadores de Fármacos/química , Portadores de Fármacos/síntesis química , Dispositivos Laboratorio en un Chip , Nanoestructuras/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Liberación de Fármacos , Geles , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Hidrodinámica , Concentración de Iones de Hidrógeno , Peso Molecular , Polietileneimina/química
6.
Biomacromolecules ; 17(11): 3474-3484, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27766854

RESUMEN

The temperature-induced gelation of chitosan/glycerophosphate (Chs/GP) systems through physical interactions has shown great potential for various biomedical applications. In the present work, hydroxyethyl cellulose (HEC) was added to the thermosensitive Chs/GP solution to improve the mechanical strength and gel properties of the incipient Chs/HEC/GP gel in comparison with the Chs/GP hydrogel at body temperature. The physical features of the macromolecular complexes formed by the synergistic interaction between chitosan and hydroxyethyl cellulose in the presence of ß-glycerophosphate disodium salt solution have been studied essentially from a rheological point of view. The temperature and time sweep rheological characterizations of the thermogelling systems revealed that the sol-gel transition temperature of the Chs/HEC/GP blends is equal to 37 °C at neutral pH; with increasing HEC content in the solutions, more compact networks with considerably improved gel strength are formed without influencing the gelation time. The formed hydrogel matrix has enough mechanical integrity and adequate strength for using it as injectable in situ forming matrices for biomedical applications. The classical Winter-Chambon (W-C) and Fredrickson-Larson (F-L) theories were applied to determine the gel point. In view of the obtained results, it is shown that the F-L theory can be employed as a robust and less tedious method than the W-C approach to precisely determine the gel point in these systems. At the end, molecular simulation studies were conducted by using ab initio quantum mechanics (QM) calculations carried out on Chs and HEC models, and molecular dynamics (MD) simulations of solvated Chs/HEC blend systems showed the binding behavior of Chs/HEC polymers. Analyses of interaction energy, radial distribution function, and hydrogen bonding from simulation studies strongly supported the experimental results; they all disclosed that hydrogen-bond formation between Chs moieties with regard to HEC chains plays an important role for the stabilization of the complexes.


Asunto(s)
Celulosa/química , Quitosano/química , Glicerofosfatos/química , Polímeros/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Sustancias Macromoleculares , Fenómenos Mecánicos , Simulación de Dinámica Molecular , Teoría Cuántica , Reología , Temperatura
7.
Nanomedicine ; 11(7): 1809-19, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25933690

RESUMEN

Advancement of bone tissue engineering as an alternative for bone regeneration has attracted significant interest due to its potential in reducing the costs and surgical trauma affiliated with the effective treatment of bone defects. We have improved the conventional approach of producing polymeric nanoparticles, as one of the most promising choices for drug delivery systems, using a microfluidics platform, thus further improving our control over osteogenic differentiation of mesenchymal stem cells. Molecular dynamics simulations were carried out for theoretical understanding of our experiments in order to get a more detailed molecular-scale insight into the drug-carrier interactions. In this work, with the sustained intracellular delivery of dexamethasone from microfluidics-synthesized nanoparticles, we explored the effects of particle design on controlling stem cell fates. We believe that the insights learned from this work will lead to the discovery of new strategies to tune differentiation for in situ differentiation or stem cell therapeutics. FROM THE CLINICAL EDITOR: The use of mesenchymal stem cells has been described by many researchers as a novel therapy for bone regeneration. One major hurdle in this approach is the control of osteogenic differentiation. In this article, the authors described elegantly their microfluidic system in which dexamethasone loaded nanoparticles were produced. This system would allow precise fabrication of nanoparticles and consequently higher efficiency in cellular differentiation.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Nanopartículas/administración & dosificación , Osteogénesis/efectos de los fármacos , Huesos/efectos de los fármacos , Dexametasona/administración & dosificación , Dexametasona/química , Sistemas de Liberación de Medicamentos , Citometría de Flujo , Humanos , Microfluídica , Simulación de Dinámica Molecular , Nanopartículas/química , Ingeniería de Tejidos
8.
ACS Nano ; 18(9): 6908-6926, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38381620

RESUMEN

The durability of a protective immune response generated by a vaccine depends on its ability to induce long-term T cell immunity, which tends to decline in aging populations. The longest protection appears to arise from T memory stem cells (TMSCs) that confer high expandability and effector functions when challenged. Here we engineered artificial antigen presenting cells (aAPC) with optimized size, stiffness and activation signals to induce human and mouse CD8+ TMSCs in vitro. This platform was optimized as a vaccine booster of TMSCs (Vax-T) with prolonged release of small-molecule blockade of the glycogen synthase kinase-3ß together with target antigens. By using SARS-CoV-2 antigen as a model, we show that a single injection of Vax-T induces durable antigen-specific CD8+ TMSCs in young and aged mice, and generates humoral responses at a level stronger than or similar to soluble vaccines. This Vax-T approach can boost long-term immunity to fight infectious diseases, cancer, and other diseases.


Asunto(s)
Linfocitos T CD8-positivos , Vacunas , Ratones , Humanos , Animales , Memoria Inmunológica , Materiales Biocompatibles , Células Madre
9.
ACS Biomater Sci Eng ; 10(3): 1686-1696, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38347681

RESUMEN

One of the main challenges in tissue engineering is finding a way to deliver specific growth factors (GFs) with precise spatiotemporal control over their presentation. Here, we report a novel strategy for generating microscale carriers with enhanced affinity for high content loading suitable for the sustained and localized delivery of GFs. Our developed microparticles can be injected locally and sustainably release encapsulated growth factors for up to 28 days. Fine-tuning of particles' size, affinity, microstructures, and release kinetics is achieved using a microfluidic system along with bioconjugation techniques. We also describe an innovative 3D micromixer platform to control the formation of core-shell particles based on superaffinity using a polymer-peptide conjugate for further tuning of release kinetics and delayed degradation. Chitosan shells block the burst release of encapsulated GFs and enable their sustained delivery for up to 10 days. The matched release profiles and degradation provide the local tissues with biomimetic, developmental-biologic-compatible signals to maximize regenerative effects. The versatility of this approach is verified using three different therapeutic proteins, including human bone morphogenetic protein-2 (rhBMP-2), vascular endothelial growth factor (VEGF), and stromal cell-derived factor 1 (SDF-1α). As in vivo morphogenesis is typically driven by the combined action of several growth factors, the proposed technique can be developed to generate a library of GF-loaded particles with designated release profiles.


Asunto(s)
Microfluídica , Factor A de Crecimiento Endotelial Vascular , Humanos , Preparaciones de Acción Retardada/química , Factor A de Crecimiento Endotelial Vascular/genética , Ingeniería de Tejidos , Polímeros
10.
Cell Stem Cell ; 30(4): 337-338, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028397

RESUMEN

Zhang et al.1 show that the mechanical properties of a three-dimensional (3D) hydrogel can enhance the secretion of niche factors from bone marrow stromal cells, which in turn promotes the maintenance of hematopoietic stem cells (HSCs) and reverses aging hallmarks in HSCs.


Asunto(s)
Células de la Médula Ósea , Células Madre Mesenquimatosas , Rejuvenecimiento , Células Madre Hematopoyéticas , Nicho de Células Madre
11.
Nat Biomed Eng ; 7(1): 56-71, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36550304

RESUMEN

A tumour microenvironment abundant in regulatory T (Treg) cells aids solid tumours to evade clearance by effector T cells. Systemic strategies to suppress Treg cells or to augment immunity can elicit autoimmune side effects, cytokine storms and other toxicities. Here we report the design, fabrication and therapeutic performance of a biodegradable macroporous scaffold, implanted peritumourally, that releases a small-molecule inhibitor of transforming growth factor ß to suppress Treg cells, chemokines to attract effector T cells and antibodies to stimulate them. In two mouse models of aggressive tumours, the implant boosted the recruitment and activation of effector T cells into the tumour and depleted it of Treg cells, which resulted in an 'immunological abscopal effect' on distant metastases and in the establishment of long-term memory that impeded tumour recurrence. We also show that the scaffold can be used to deliver tumour-antigen-specific T cells into the tumour. Peritumourally implanted immunomodulatory scaffolds may represent a general strategy to enhance T-cell immunity and avoid the toxicities of systemic therapies.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Ratones , Animales , Inmunidad , Neoplasias/terapia , Antígenos de Neoplasias/metabolismo , Modelos Animales de Enfermedad , Microambiente Tumoral
12.
J Am Chem Soc ; 134(46): 18904-7, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23126467

RESUMEN

At nanoscale length scales, the properties of particles change rapidly with the slightest change in dimension. The use of a microfluidic platform enables precise control of sub-100 nm organic nanoparticles (NPs) based on polybenzimidazole. Using hydrodynamic flow focusing, we can control the size and shape of the NPs, which in turn controls a number of particle material properties. The anhydrous proton-conducting nature of the prepared NPs allowed us to make a high-performance ion exchange membrane for fuel cell applications, and microfluidic tuning of the NPs allowed us subsequently to tune the fuel cell performance.


Asunto(s)
Microfluídica , Nanopartículas , Polímeros/química , Hidrodinámica , Microscopía Electrónica de Transmisión
13.
Adv Healthc Mater ; 11(12): e2102593, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35191610

RESUMEN

Periodontal disease begins as an inflammatory response to a bacterial biofilm deposited around the teeth, which over time leads to the destruction of tooth-supporting structures and consequently tooth loss. Conventional treatment strategies show limited efficacy in promoting regeneration of damaged periodontal tissues. Here, a delivery platform is developed for small extracellular vesicles (sEVs) derived from gingival mesenchymal stem cells (GMSCs) to treat periodontitis. EVs can achieve comparable therapeutic effects to their cells of origin. However, the short half-lives of EVs after their administration along with their rapid diffusion away from the delivery site necessitate frequent administration to achieve therapeutic benefits. To address these issues, "dual delivery" microparticles are engineered enabling microenvironment-sensitive release of EVs by metalloproteinases at the affected site along with antibiotics to suppress bacterial biofilm growth. GMSC sEVs are able to decrease the secretion of pro-inflammatory cytokines by monocytes/macrophages and T cells, suppress T-cell activation, and induce the formation of T regulatory cells (Tregs) in vitro and in a rat model of periodontal disease. One-time administration of immunomodulatory GMSC sEV-decorated microparticles leads to a significant improvement in regeneration of the damaged periodontal tissue. This approach will have potential clinical applications in the regeneration of a variety of tissues.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Enfermedades Periodontales , Animales , Enfermedades Periodontales/terapia , Periodoncio , Ratas , Células Madre
14.
Matter ; 5(2): 666-682, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35340559

RESUMEN

Periodontal diseases are caused by microbial infection and the recruitment of destructive immune cells. Current therapies mainly deal with bacteria elimination, but the regeneration of periodontal tissues remains a challenge. Here we developed a modular microneedle (MN) patch that delivered both antibiotic and cytokines into the local gingival tissue to achieve immunomodulation and tissue regeneration. This MN patch included a quickly dissolvable gelatin membrane for an immediate release of tetracycline and biodegradable GelMA MNs that contained tetracycline-loaded poly(lactic-co-glycolic acid) nanoparticles and cytokine-loaded silica microparticles for a sustained release. Antibiotic release completely inhibited bacteria growth, and the release of IL-4 and TGF-ß induced the repolarization of anti-inflammatory macrophages and the formation of regulatory T cells in vitro. In vivo delivery of MN patch into periodontal tissues suppressed proinflammatory factors and promoted pro-regenerative signals and tissue healing, which demonstrated the therapeutic potential of local immunomodulation for tissue regeneration.

15.
Matter ; 4(5): 1528-1554, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33723531

RESUMEN

Infection by SARS-CoV-2 virus often induces the dysregulation of immune responses, tissue damage, and blood clotting. Engineered biomaterials from the nano- to the macroscale can provide targeted drug delivery, controlled drug release, local immunomodulation, enhanced immunity, and other desirable functions to coordinate appropriate immune responses and to repair tissues. Based on the understanding of COVID-19 disease progression and immune responses to SARS-CoV-2, we discuss possible immunotherapeutic strategies and highlight biomaterial approaches from the perspectives of preventive immunization, therapeutic immunomodulation, and tissue healing and regeneration. Successful development of biomaterial platforms for immunization and immunomodulation will not only benefit COVID-19 patients, but also have broad applications for a variety of infectious diseases.

16.
Micromachines (Basel) ; 11(2)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024165

RESUMEN

Here, we developed a combinatorial delivery platform for chronic wound healing applications. A microfluidic system was utilized to form a series of biopolymer-based microparticles with enhanced affinity to encapsulate and deliver vascular endothelial growth factor (VEGF). Presence of heparin into the structure can significantly increase the encapsulation efficiency up to 95% and lower the release rate of encapsulated VEGF. Our in vitro results demonstrated that sustained release of VEGF from microparticles can promote capillary network formation and sprouting of endothelial cells in 2D and 3D microenvironments. These engineered microparticles can also encapsulate antibiotic-loaded nanoparticles to offer a dual delivery system able to fight bacterial infection while promoting angiogenesis. We believe this highly tunable drug delivery platform can be used alone or in combination with other wound care products to improve the wound healing process and promote tissue regeneration.

17.
Biodes Manuf ; 3(3): 203-226, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32754347

RESUMEN

Brain tumors' severity ranges from benign to highly aggressive and invasive. Bioengineering tools can assist in understanding the pathophysiology of these tumors from outside the body and facilitate development of suitable antitumoral treatments. Here, we first describe the physiology and cellular composition of brain tumors. Then, we discuss the development of three-dimensional tissue models utilizing brain tumor cells. In particular, we highlight the role of hydrogels in providing a biomimetic support for the cells to grow into defined structures. Microscale technologies, such as electrospinning and bioprinting, and advanced cellular models aim to mimic the extracellular matrix and natural cellular localization in engineered tumor tissues. Lastly, we review current applications and prospects of hydrogels for therapeutic purposes, such as drug delivery and co-administration with other therapies. Through further development, hydrogels can serve as a reliable option for in vitro modeling and treatment of brain tumors for translational medicine.

18.
Mater Horiz ; 7(11): 3028-3033, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33343906

RESUMEN

Recent innovations in immunoregulatory treatments have demonstrated both the impressive potential and vital role of T cells in fighting cancer. These treatments come at a cost, with systemic side effects including life-threatening autoimmunity and immune dysregulation the norm. Here, we developed an approach to locally synthesize immune therapies and in this way, avoid systemic toxicity. Rather than just encapsulating cytokines, we endowed our nanoparticles with transcriptional and translational machinery to make cytokines locally, in situ, and on demand (activated by light). We demonstrated the capabilities of these particles in vitro and in vivo, in a mouse model of melanoma, and showed that tumor-infiltrating T cells were more highly activated in the context of these "microfactory" particles that make the synthetic cytokine.

19.
Acta Biomater ; 108: 326-336, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32160962

RESUMEN

Gene delivery offers promising outcomes for functional recovery or regeneration of lost tissues at cellular and tissue levels. However, more efficient carriers are needed to safely and locally delivery of genetic materials. Herein, we demonstrate microfluidic-assisted synthesis of plasmid DNA (pDNA)-based nanocomplexe (NC) platforms for bone tissue regeneration. pDNA encoding human bone morphogenesis protein-2 (BMP-2) was used as a gene of interest. Formation and fine-tuning of nanocomplexes (NCs) between pDNA and chitosan (CS) as carriers were performed using a micromixer platform. Flow characteristics were adjusted to tune mixing time and consequently size, zeta potential, and compactness of assembled NCs. Subsequently, NCs were immobilized on a nanofibrous Poly(ε-caprolactone) (PCL) scaffold functionalized with metalloprotease-sensitive peptide (MMP-sensitive). This construct can provide an environmental-sensitive and localized gene delivery platform. Osteogenic differentiation of bone marrow-derived mesenchymal stem cells (MSCs) was studied using chemical and biological assays. The presented results converge to indicate a great potential of the developed methodology for in situ bone tissue engineering using immobilized microfluidic-synthesized gene delivery nanocomplexes, which is readily expandable in the field of regenerative nanomedicine. STATEMENT OF SIGNIFICANCE: In this study, we demonstrate microfluidic-assisted synthesis of plasmid DNA (pDNA)-based nanocomplexes (NCs) platforms for bone tissue regeneration. We used pDNA encoding human bone morphogenesis protein-2 (BMP-2) as the gene of interest. Using micromixer platform nanocomplexes (NCs) between pDNA and chitosan (CS) were fabricated and optimized. NCs were immobilized on a nanofibrous polycaprolactone scaffold functionalized with metalloprotease-sensitive peptide. In vitro and in vivo assays confirmed the osteogenic differentiation of mesenchymal stem cells (MSCs). The obtained data indicated great potential of the developed methodology for in situ bone tissue engineering using immobilized microfluidic-synthesized gene delivery nanocomplexes, which is readily expandable in the field of regenerative nanomedicine.


Asunto(s)
Osteogénesis , Ingeniería de Tejidos , Regeneración Ósea , Huesos , Humanos , Andamios del Tejido
20.
Sci Transl Med ; 12(534)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32161103

RESUMEN

Cell-laden hydrogels are widely used in tissue engineering and regenerative medicine. However, many of these hydrogels are not optimized for use in the oral environment, where they are exposed to blood and saliva. To address these challenges, we engineered an alginate-based adhesive, photocrosslinkable, and osteoconductive hydrogel biomaterial (AdhHG) with tunable mechanical properties. The engineered hydrogel was used as an injectable mesenchymal stem cell (MSC) delivery vehicle for craniofacial bone tissue engineering applications. Subcutaneous implantation in mice confirmed the biodegradability, biocompatibility, and osteoconductivity of the hydrogel. In a well-established rat peri-implantitis model, application of the adhesive hydrogel encapsulating gingival mesenchymal stem cells (GMSCs) resulted in complete bone regeneration around ailing dental implants with peri-implant bone loss. Together, we have developed a distinct bioinspired adhesive hydrogel with tunable mechanical properties and biodegradability that effectively delivers patient-derived dental-derived MSCs. The hydrogel is photocrosslinkable and, due to the presence of MSC aggregates and hydroxyapatite microparticles, promotes bone regeneration for craniofacial tissue engineering applications.


Asunto(s)
Adhesivos , Hidrogeles , Animales , Regeneración Ósea , Huesos , Humanos , Ratones , Ratas , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA