RESUMEN
Since 1997, highly pathogenic avian influenza viruses, such as H5N1, have been recognized as a possible pandemic hazard to men and the poultry business. The rapid rate of mutation of H5N1 viruses makes the whole process of designing vaccines extremely challenging. Here, we used an in silico approach to design a multi-epitope vaccine against H5N1 influenza A virus using hemagglutinin (HA) and neuraminidase (NA) antigens. B-cell epitopes, Cytotoxic T lymphocyte (CTL) and Helper T lymphocyte (HTL) were predicted via IEDB, NetMHC-4 and NetMHCII-2.3 respectively. Two adjuvants consisting of Human ß-defensin-3 (HßD-3) along with pan HLA DR-binding epitope (PADRE) have been chosen to induce more immune response. Linkers including KK, AAY, HEYGAEALERAG, GPGPGPG and double EAAAK were utilized to link epitopes and adjuvants. This construct encodes a protein having 350 amino acids and 38.46 kDa molecular weight. Antigenicity of ~ 1, the allergenicity of non-allergen, toxicity of negative and solubility of appropriate were confirmed through Vaxigen, AllerTOP, ToxDL and DeepSoluE, respectively. The 3D structure of H5N1 was refined and validated with a Z-Score of - 0.87 and an overall Ramachandran of 99.7%. Docking analysis showed H5N1 could interact with TLR7 (docking score of - 374.08 and by 4 hydrogen bonds) and TLR8 (docking score of - 414.39 and by 3 hydrogen bonds). Molecular dynamics simulations results showed RMSD and RMSF of 0.25 nm and 0.2 for H5N1-TLR7 as well as RMSD and RMSF of 0.45 nm and 0.4 for H5N1-TLR8 complexes, respectively. Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) confirmed stability and continuity of interaction between H5N1-TLR7 with the total binding energy of - 29.97 kJ/mol and H5N1-TLR8 with the total binding energy of - 23.9 kJ/mol. Investigating immune response simulation predicted evidence of the ability to stimulate T and B cells of the immunity system that shows the merits of this H5N1 vaccine proposed candidate for clinical trials.
Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Vacunas , Animales , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Epítopos de Linfocito T/genética , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Epítopos de Linfocito B , Biología Computacional/métodos , Simulación del Acoplamiento Molecular , Vacunas de Subunidad/genéticaRESUMEN
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in more than 4.4 million deaths worldwide as of August 24, 2021. Viral infections such as SARS-CoV2 are associated with endoplasmic reticulum (ER) stress and also increased the level of reactive oxygen species. Activating transcription factor 4 (ATF4) is preferentially translated under integrated stress conditions and controls the genes involved in protein homeostasis, amino acid transport and metabolism, and also protection from oxidative stress. The GRP78, regulated either directly or indirectly by ATF4, is an essential chaperone in the ER and overexpressed and appears on the surface of almost all cells during stress and function as a SARS-CoV2 receptor. In this mini-review article, we briefly discuss the effects of SARS-CoV2 infection on the ER stress, and then the stress modulator functions of ATF4 and GRP78 as novel therapeutic targets were highlighted. Finally, the effects of GRP78 inhibitory components as potential factors for targeted therapies for COVID-19 critical cases were discussed.
Asunto(s)
Factor de Transcripción Activador 4/metabolismo , COVID-19/metabolismo , Chaperón BiP del Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Humanos , SARS-CoV-2/patogenicidadRESUMEN
The pandemic outbreak of coronavirus disease 2019 (COVID-19) has created health challenges in all parts of the world. Understanding the entry mechanism of this virus into host cells is essential for effective treatment of COVID-19 disease. This virus can bind to various cell surface molecules or receptors, such as angiotensin-converting enzyme 2 (ACE2), to gain cell entry. Respiratory failure and pulmonary edema are the most important causes of mortality from COVID-19 infections. Cytokines, especially proinflammatory cytokines, are the main mediators of these complications. For normal respiratory function, a healthy air-blood barrier and sufficient blood flow to the lungs are required. In this review, we first discuss airway epithelial cells, airway stem cells, and the expression of COVID-19 receptors in the airway epithelium. Then, we discuss the suggested molecular mechanisms of endothelial dysfunction and blood vessel damage in COVID-19. Coagulopathy can be caused by platelet activation leading to clots, which restrict blood flow to the lungs and lead to respiratory failure. Finally, we present an overview of the effects of immune and non-immune cells and cytokines in COVID-19-related respiratory failure.
Asunto(s)
COVID-19 , Insuficiencia Respiratoria , Citocinas , Humanos , Peptidil-Dipeptidasa A , SARS-CoV-2RESUMEN
High morbidity and mortality caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made coronavirus disease 2019 (COVID-19) the leading challenge for health experts all over the world. Currently, there is no specific treatment for COVID-19; however, thanks to worldwide intense attempts, novel vaccines such as mRNA-1273 (Moderna TX, Inc.) and BNT162b2 (Biontech/Pfizer) were developed very fast and FDA approved them for emergency use. Nanomedicine-based drug delivery can be an advanced therapeutic strategy to deal with clinical complications of COVID-19. Given the fact that SARS-CoV-2 typically affects the respiratory tract, application of inhalable nanoparticles (NPs) for targeted drug delivery to the alveolar space appears to be an effective and promising therapeutic strategy. Loading the medicinal components into NPs enhances the stability, bioavailability, solubility and sustained release of them. This approach can circumvent major challenges in efficient drug delivery such as solubility and any adverse impact of medicinal components due to off-targeted delivery and resulting systemic complications. Inhalable NPs could be delivered through nasal sprays, inhalers, and nebulizers. NPs also could interfere in virus attachment to host cells and prevent infection. Moreover, nanomedicine-based technologies can facilitate accurate and rapid detection of virus compared to the conventional methods. In this review, the nano-based theranostics modalities for the management of respiratory complications of COVID-19 were discussed.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos , Medicina de Precisión , SARS-CoV-2RESUMEN
OBJECTIVE: To assess the number of adult critical care beds in Asian countries and regions in relation to population size. DESIGN: Cross-sectional observational study. SETTING: Twenty-three Asian countries and regions, covering 92.1% of the continent's population. PARTICIPANTS: Ten low-income and lower-middle-income economies, five upper-middle-income economies, and eight high-income economies according to the World Bank classification. INTERVENTIONS: Data closest to 2017 on critical care beds, including ICU and intermediate care unit beds, were obtained through multiple means, including government sources, national critical care societies, colleges, or registries, personal contacts, and extrapolation of data. MEASUREMENTS AND MAIN RESULTS: Cumulatively, there were 3.6 critical care beds per 100,000 population. The median number of critical care beds per 100,000 population per country and region was significantly lower in low- and lower-middle-income economies (2.3; interquartile range, 1.4-2.7) than in upper-middle-income economies (4.6; interquartile range, 3.5-15.9) and high-income economies (12.3; interquartile range, 8.1-20.8) (p = 0.001), with a large variation even across countries and regions of the same World Bank income classification. This number was independently predicted by the World Bank income classification on multivariable analysis, and significantly correlated with the number of acute hospital beds per 100,000 population (r = 0.19; p = 0.047), the universal health coverage service coverage index (r = 0.35; p = 0.003), and the Human Development Index (r = 0.40; p = 0.001) on univariable analysis. CONCLUSIONS: Critical care bed capacity varies widely across Asia and is significantly lower in low- and lower-middle-income than in upper-middle-income and high-income countries and regions.
Asunto(s)
Cuidados Críticos/estadística & datos numéricos , Capacidad de Camas en Hospitales/estadística & datos numéricos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Asia , Estudios Transversales , Países Desarrollados/estadística & datos numéricos , Países en Desarrollo/estadística & datos numéricos , HumanosRESUMEN
BACKGROUND: Stress-related mucosal disease occurs in many critically ill-patients within 24 h of admission. Proton pump inhibitor therapy has been documented to produce more potent inhibition of gastric acid secretion than histamine 2 receptor antagonists. This study aimed to compare extemporaneous preparations of omeprazole, pantoprazole oral suspension and intravenous (IV) pantoprazole on the gastric pH in intensive care unit patients. MATERIALS AND METHODS: This was a randomized single-blind-study. Patients of ≥ 16 years of age with a nasogastric tube, who required mechanical ventilation for ≥ 48 h, were eligible for inclusion. The excluded patients were those with active gastrointestinal bleeding, known allergy to omeprazole and pantoprazole and those intolerant to the nasogastric tube. Fifty-six patients were randomized to treatment with omeprazole suspension 2 mg/ml (40 mg every day), pantoprazole suspension 2 mg/ml (40 mg every day) and IV pantoprazole (40 mg every day) for up to 14 days. Gastric aspirates were sampled before and 1-2.5 h after the drug administration for the pH measurement using an external pH meter. Data were analyzed using SPSS (version 21.0). RESULTS: In this study, 56 critically ill-patients (39 male, 17 female, mean age: 61.5 ± 15.65 years) were followed for the control of the gastric pH. On each of the 14 trial days the mean of the gastric pH alteration was significantly higher in omeprazole and pantoprazole suspension-treated patients than in IV pantoprazole-treated patients (P < 0.001). CONCLUSION: Omeprazole and pantoprazole oral suspension are more effective than IV pantoprazole in increasing the gastric pH.
RESUMEN
The viral replication can impress through cellular miRNAs. Indeed, either the antiviral responses or the viral infection changes through cellular miRNAs resulting in affecting many regulatory signaling pathways. One of the microRNA families that is effective in human cancers, diseases, and viral infections is the miR-29 family. Members of miR-29 family are effective in different viral infections as their roles have appeared in regulation of immunity pathways either in innate immunity including interferon and inflammatory pathways or in adaptive immunity including activation of T-cells and antibodies production. Although miR-29a affects viral replication by suppressing antiviral responses, it can inhibit the expression of viral mRNAs via binding to their 3'UTR. In the present work, we discuss the evidence related to miR-29a and viral infection through host immunity regulation. We also review roles of other miR-29 family members by focusing on their role as biomarkers for diagnosing and targets for viral diseases management.
RESUMEN
Background: The coronavirus disease 2019 (COVID-19) pandemic highlighted the importance of critical care. The aim of the current study was to compare the number of adult critical care beds in relation to population size in Asian countries and regions before (2017) and during (2022) the pandemic. Methods: This observational study collected data closest to 2022 on critical care beds (intensive care units and intermediate care units) in 12 middle-income and 7 high-income economies (using the 2022-2023 World Bank classification), through a mix of methods including government sources, national critical care societies, personal contacts, and data extrapolation. Data were compared with a prior study from 2017 of the same countries and regions. Findings: The cumulative number of critical care beds per 100,000 population increased from 3.0 in 2017 to 9.4 in 2022 (p = 0.003). The median figure for middle-income economies increased from 2.6 (interquartile range [IQR] 1.7-7.8) to 6.6 (IQR 2.2-13.3), and that for high-income economies increased from 11.4 (IQR 7.3-22.8) to 13.9 (IQR 10.7-21.7). Only 3 countries did not see a rise in bed capacity. Where data were available in 2022, 10.9% of critical care beds were in single rooms (median 5.0% in middle-income and 20.3% in high-income economies), and 5.3% had negative pressure (median 0.7% in middle-income and 18.5% in high-income economies). Interpretation: Critical care bed capacity in the studied Asian countries and regions increased close to three-fold from 2017 to 2022. Much of this increase was attributed to middle-income economies, but substantial heterogeneity exists. Funding: None.
RESUMEN
In coronavirus disease 2019 (COVID-19), the formation of cytokine storm may have a role in worsening of the disease. By attaching the cytokines like interleukin-6 to the cytokine receptors on a cell surface, Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathway will be activated in the cytoplasm lead to hyperinflammatory conditions and acute respiratory distress syndrome. Inhibition of JAK/STAT pathway may be useful to prevent the formation of cytokine storm. Tofacitinib is a pan inhibitor of JAKs. In this review, the main characteristics of tofacitinib and its usefulness against COVID-19 pneumonia were reviewed. Tofacitinib may be a hopeful therapeutic candidate against COVID-19 respiratory injury since it inhibits a range of inflammatory pathways. Hence, the agent may be considered a potential therapeutic against the post-COVID-19 respiratory damage. Compared to other JAK inhibitors (JAKi), the administration of tofacitinib in COVID-19 patients may be safer and more effective. Other JAKi such as baricitinib are related to severe adverse events such as thrombotic events compared to more common side effects of tofacitinib.
RESUMEN
Despite the need for novel, effective therapeutics for the COVID-19 pandemic, no curative regimen is yet available, therefore patients are forced to rely on supportive and nonspecific therapies. Some SARS-CoV-2 proteins, like the 3 C-like protease (3CLpro) or the major protease (Mpro), have been identified as promising targets for antiviral drugs. The Mpro has major a role in protein processing as well as pathogenesis of the virus, and could be a useful therapeutic target. The antiviral drug nirmatrelvir can keep SARS-CoV-2 from replicating through inhibiting Mpro. Nirmatrelvir was combined with another HIV protease inhibitor, ritonavir, to create Paxlovid (Nirmatrelvir/Ritonavir). The metabolizing enzyme cytochrome P450 3 A is inhibited by ritonavir to lengthen the half-life of nirmatrelvir, so rintonavir acts as a pharmacological enhancer. Nirmatrelvir exhibits potent antiviral activity against current coronavirus variants, despite significant alterations in the SARS-CoV-2 viral genome. Nevertheless, there are still several unanswered questions. This review summarizes the current literature on nirmatrelvir and ritonavir efficacy in treating SARS-CoV-2 infection, and also their safety and possible side effects.
Asunto(s)
COVID-19 , Inhibidores de la Proteasa del VIH , Humanos , Ritonavir , SARS-CoV-2 , Pandemias , Tratamiento Farmacológico de COVID-19 , Antivirales , Péptido HidrolasasRESUMEN
Background: This study aims to investigate the clinical and demographic features of underlying medical conditions and the potential relationship between underlying diseases and the increased rate of morbidity and mortality due to COVID-19. Materials and Methods: This study was conducted on 350 COVID-19 patients hospitalized at the Masih Daneshvari Hospital from February-July 2021. All participants had confirmed COVID-19 diagnosis based on symptoms and/or positive PCR test or chest X-ray results. Data was collected from medical records on demographics, disease severity, symptoms, underlying conditions like diabetes, hypertension, coronary heart disease, obesity, renal disease/transplantation, and outcomes like hospital stay, ICU admission, and mortality. Relationships between age, underlying diseases, and mortality were analyzed using chi-square and Fisher's exact tests." Results: A total of 350 patients diagnosed with COVID-19 were included in the study, with an average estimated age of (60.8±15.4). The age group of 56 and above had the highest morbidity rate, which accounted for 50% of the total participants. Among the COVID-19 patients, diabetes was the most common underlying medical condition, accounting for 31.4% of the cases. High blood pressure was present in 27.1% of the patients, and 17.1% of the total participants had coronary heart disease (CHD). Additionally, 10.9% of the participants were overweight, and 30 of them had previously experienced kidney failure or transplantation. Moreover, the study found that 40% of patients with diabetes died, while the mortality rate was 38.3% in patients with CHD and 47.4% in overweight participants. High blood pressure patients had a mortality rate of 43.2%, and patients with renal failure or kidney transplantation had a significantly increased risk of mortality at 83.3%. The research also revealed a significant and direct relationship between mortality rate, age group, and underlying disease among the patients (P<0.05). Conclusion: The findings of the present study hold significant implications for preventive interventions and policy adoption, particularly in relation to the use of calendar age as the key criterion for risk evaluation. These results underscore the need for a more precise and focused approach to prioritizing patients with identified risk factors.
RESUMEN
BACKGROUND AND AIMS: The main causes of death in patients with severe Coronavirus disease-2019 (COVID-19) are acute respiratory distress syndrome (ARDS) and multiorgan failure caused by a severe inflammatory cascade. Novel treatment strategies, such as stem-cell-based therapy and their derivatives can be used to relieve inflammation in these cases. In this study, we aimed to evaluate the safety and efficacy of therapy using mesenchymal stromal cells (MSCs) and their derived extracellular vesicles in COVID-19 patients. MATERIALS AND METHODS: COVID-19 patients with ARDS were included in this study and allocated into two study and control groups using block randomization. While all patients received recommended treatment based on guidelines from the national advisory committee for COVID-19 pandemic, the two intervention groups received two consecutive injections of MSCs (100 × 106 cells) or one dose of MSCs (100 × 106 cells) followed by one dose of MSC-derived extracellular vesicles (EVs). Patients were assessed for safety and efficacy by evaluating clinical symptoms, laboratory parameters, and inflammatory markers at baseline and 48 h after the second intervention. RESULTS: A total number of 43 patients (the MSC alone group = 11, MSC plus EV group = 8, and control group = 24) were included in the final analysis. Mortality was reported in three patients in the MSC alone group (RR: 0.49; 95% CI 0.14-1.11; P = 0.08); zero patient in the MSC plus EV group (RR: 0.08; 95% CI 0.005-1.26; P = 0.07) and eight patients in the control group. MSC infusion was associated with a decrease in inflammatory cytokines such as IL-6 (P = 0.015), TNF-α (P = 0.034), IFN-γ (P = 0.024), and CRP (P = 0.041). CONCLUSION: MSCs and their extracellular vesicles can significantly reduce the serum levels of inflammatory markers in COVID-19 patients, with no serious adverse events. Trial registration IRCT, IRCT registration number: IRCT20200217046526N2. Registered 13th April 2020, http://www.irct.ir/trial/47073 .
Asunto(s)
COVID-19 , Vesículas Extracelulares , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Síndrome de Dificultad Respiratoria , Humanos , COVID-19/terapia , Pandemias , Resultado del Tratamiento , Síndrome de Dificultad Respiratoria/terapiaRESUMEN
Rapid changes in the viral genome allow viruses to evade threats posed by the host immune response or antiviral drugs, and can lead to viral persistence in the host cells. RNA-dependent RNA polymerase (RdRp) is an essential enzyme in RNA viruses, which is involved in RNA synthesis through the formation of phosphodiester bonds. Therefore, in RNA viral infections such as SARS-CoV-2, RdRp could be a crucial therapeutic target. The present review discusses the promising application of RdRp inhibitors, previously approved or currently being tested in human clinical trials, in the treatment of RNA virus infections. Nucleoside inhibitors (NIs) bind to the active site of RdRp, while nonnucleoside inhibitors (NNIs) bind to allosteric sites. Given the absence of highly effective drugs for the treatment of COVID-19, the discovery of an efficient treatment for this pandemic is an urgent concern for researchers around the world. We review the evidence for molnupiravir (MK-4482, EIDD-2801), an antiviral drug originally designed for Alphavirus infections, as a potential preventive and therapeutic agent for the management of COVID-19. At the beginning of this pandemic, molnupiravir was in preclinical development for seasonal influenza. When COVID-19 spread dramatically, the timeline for development was accelerated to focus on the treatment of this pandemic. Real time consultation with regulators took place to expedite this program. We summarize the therapeutic potential of RdRp inhibitors, and highlight molnupiravir as a new small molecule drug for COVID-19 treatment.
Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/enzimología , Citidina/análogos & derivados , Hidroxilaminas/uso terapéutico , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Animales , Antivirales/farmacología , Ensayos Clínicos como Asunto/métodos , Citidina/farmacología , Citidina/uso terapéutico , Humanos , Hidroxilaminas/farmacología , ARN Polimerasa Dependiente del ARN/metabolismoRESUMEN
BACKGROUND: Bioimpedance vector analysis (BIVA) has been suggested as a valuable tool in assessing volume status in critically ill patients. However, its effectiveness in guiding fluid removal by continuous renal replacement therapy (CRRT) has not been evaluated. METHODS: In this randomized controlled trial, 65 critically ill patients receiving CRRT were allocated on a 1:1 ratio to have UF prescribed and adjusted using BIVA fluid assessment in the intervention group (32 patients) or conventional clinical parameters (33 patients). The primary outcome was the lean body mass (LBM) water content at CRRT discontinuation, and the secondary outcomes included the mortality rate, urinary output, the duration of ventilation support, and ICU stay. RESULTS: The study group was associated with a lower water content of LBM (80.7 ± 9.4 vs. 85.9 ± 10.4%; p < 0.05), and a higher mean UF-rate and urinary output (1.5 ± 0.8 vs. 1.2 ± 0.5 ml/kg/h and 0.9 ± 0.9 vs 0.5 ± 0.6 ml/kg/h, both: p < 0.05). The mortality rate, the length of ICU stay, and ventilation support duration were similar. CONCLUSION: BIVA guided UF prescription may be associated with a lower rate of fluid overload. Larger studies are required to evaluate its impact on patients' outcomes.
Asunto(s)
Lesión Renal Aguda , Terapia de Reemplazo Renal Continuo , Humanos , Enfermedad Crítica/terapia , Impedancia Eléctrica , Unidades de Cuidados Intensivos , Ultrafiltración , Estudios Prospectivos , Agua , Terapia de Reemplazo Renal , Lesión Renal Aguda/terapiaRESUMEN
More than a year after the onset of the coronavirus disease pandemic in 2019, the disease remains a major global health issue. During this time, health organizations worldwide have tried to provide integrated treatment guidelines to control coronavirus disease 2019 (COVID-19) at different levels. However, due to the novel nature of the disease and the emergence of new variants, medical teams' updating medical information and drug prescribing guidelines should be given special attention. This version is an updated instruction of the National Research Institute of Tuberculosis and Lung Disease (NRITLD) in collaboration with a group of specialists from Masih Daneshvari Hospital in Tehran, Iran, which is provided to update the information of caring clinicians for the treatment and care of COVID-19 hospitalized patients.
RESUMEN
The healthcare system in Iran, like most around the world, is managing thousands of patients hospitalised with COVID-19. In Iran, in-hospital mortality is in the region of 25%, rising to 50-60% in patients admitted to intensive care. Hyperinflammation, characterised by cytokine storm, appears to be a hallmark of severe COVID-19 and to date only the anti-inflammatory drug dexamethasone has been shown to reduce mortality in those hospitalised with the disease. There is a sound scientific rationale behind the use of IgM-enriched immunoglobulin in the management of patients with severe COVID-19. It has been used successfully in the management of hyperinflammation in patients with sepsis and has led to improved radiographic scores in patients with severe cases of severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Recently the successful treatment of a patient with COVID-19 with IgM-enriched immunoglobulin was reported. Here we report the outcome of a further 15 patients hospitalised with COVID-19 treated with IgM-enriched immunoglobulin. Improvements in computed tomography (CT) score were observed in nine patients, indicating that further clinical studies into the use of IgM-enriched immunoglobulin in the treatment of severe COVID-19 are warranted.
Asunto(s)
COVID-19/terapia , Inmunoglobulina M/uso terapéutico , Humanos , Irán , Pulmón/patologíaRESUMEN
BACKGROUND: Incidence and severity of SARS-CoV2 infection are significantly lower in children and teenagers proposing that certain vaccines, routinely administered to neonates and children may provide cross-protection against this emerging infection. OBJECTIVE: To assess the cross-protection induced by prior measles, mumps and rubella (MMR) vaccinations against COVID-19. METHODS: The antibody responses to MMR and tetanus vaccines were determined in 53 patients affected with SARS-CoV2 infection and 52 age-matched healthy subjects. Serum levels of antibodies specific for NP and RBD of SARS-CoV2 were also determined in both groups of subjects with ELISA. RESULTS: Our results revealed significant differences in anti-NP (P<0.0001) and anti-RBD (P<0.0001) IgG levels between patients and healthy controls. While the levels of rubella- and mumps specific IgG were not different in the two groups of subjects, measles-specific IgG was significantly higher in patients (P<0.01). The serum titer of anti-tetanus antibody, however, was significantly lower in patients compared to healthy individuals (P<0.01). CONCLUSION: Our findings suggest that measles vaccination triggers those B cells cross-reactive with SARS-CoV2 antigens leading to the production of increased levels of measles-specific antibody.
Asunto(s)
Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , COVID-19/inmunología , Inmunización , Inmunoglobulina G/sangre , Vacuna contra el Sarampión-Parotiditis-Rubéola/uso terapéutico , SARS-CoV-2/inmunología , Factores de Edad , Anciano , Linfocitos B/inmunología , Linfocitos B/virología , Biomarcadores/sangre , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/virología , Estudios de Casos y Controles , Protección Cruzada , Reacciones Cruzadas , Femenino , Interacciones Huésped-Patógeno , Humanos , Masculino , Vacuna contra el Sarampión-Parotiditis-Rubéola/inmunología , Persona de Mediana Edad , Toxoide Tetánico/inmunología , Toxoide Tetánico/uso terapéuticoRESUMEN
Since the outbreak of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the control of virus spread has remained challenging given the pitfalls of the current diagnostic tests. Nevertheless, RNA amplification techniques have been the gold standard among other diagnostic methods for monitoring clinical samples for the presence of the virus. In the current paper, we review the shortcomings and strengths of RT-PCR (real-time polymerase chain reaction) techniques for diagnosis of coronavirus disease (COVID)-19. We address the repercussions of false-negative and false-positive rates encountered in the test, summarize approaches to improve the overall sensitivity of this method. We discuss the barriers to the widespread use of the RT-PCR test, and some technical advances, such as RT-LAMP (reverse-transcriptase-loop mediated isothermal amplification). We also address how other molecular techniques, such as immunodiagnostic tests can be used to avoid incorrect interpretation of RT-PCR tests.
Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/aislamiento & purificación , HumanosRESUMEN
Coronavirus disease -19 (COVID-19) pandemic, caused by SARS-CoV-2, has gradually spread worldwide, becoming a major public health event. This situation requires designing a novel antiviral agent against the SARS-CoV-2; however, this is time-consuming and the use of repurposed medicines may be promising. One such medicine is favipiravir, primarily introduced as an anti-influenza agent in east world. The aim of this study was to evaluate the efficacy and safety of favipiravir in comparison with lopinavir-ritonavir in SARS-CoV-2 infection. In this randomized clinical trial, 62 patients were recruited. These patients had bilateral pulmonary infiltration with peripheral oxygen saturation lower than 93%. The median time from symptoms onset to intervention initiation was seven days. Favipiravir was not available in the Iranian pharmaceutical market, and it was decided to formulate it at the research laboratory of School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. The patients received favipiravir tablet at a dose of 1600 mg orally twice a day for day one and then 600 mg orally twice a day for days 2 to 6. In the second group, the patients received lopinavir-ritonavir combination tablet at a dose of 200/50 mg twice a day for seven days. Fever, cough, and dyspnea were improved significantly in favipiravir group in comparison with lopinavir-ritonavir group on days four and five. Mortality rate and ICU stay in both groups were similar, and there was no significant difference in this regard (P = 0.463 and P = 0.286, respectively). Chest X-ray improvement also was not significantly different between the two groups. Adverse drug reactions occurred in both groups, and impaired liver enzymes were the most frequent adverse effect. In conclusion, early administration of oral favipiravir may reduce the duration of clinical signs and symptoms in patients with COVID-19 and hospitalization period. The mortality rate also should be investigated in future clinical trials.