Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Tradit Complement Med ; 13(1): 11-19, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36685073

RESUMEN

Common treatments for the management of diabetes have limitations due to side effects, hence the need for continuous research to discover new remedies with better therapeutic efficacy. Previously, we have reported that the combination treatment of gallic acid (20 mg/kg) and andrographolide (10 mg/kg) for 15 days demonstrated synergistic hypoglycemic activity in the streptozotocin (STZ)-induced insulin-deficient diabetes rat model. Here, we attempt to further elucidate the effect of this combination therapy at the biochemical, histological and molecular levels. Our biochemical analyses showed that the combination treatment significantly increased the serum insulin level and decreased the total cholesterol and triglyceride level of the diabetic animals. Histological examinations of H&E stained pancreas, liver, kidney and adipose tissues of combination-treated diabetic animals showed restoration to the normalcy of the tissues. Besides, the combination treatment significantly enhanced the level of glucose transporter-4 (GLUT4) protein expression in the skeletal muscle of treated diabetic animals compared to single compound treated and untreated diabetic animals. The molecular docking analysis on the interaction of gallic acid and/or andrographolide with the adiponectin receptor 1 (AdipoR1), a key component in the regulation of pancreatic insulin secretion, revealed a greater binding affinity of AdipoR1 to both compounds compared to individual compounds. Taken together, these findings suggest the combination of gallic acid and andrographolide as a potent therapy for the management of diabetes mellitus.

2.
Int J Biol Macromol ; 150: 80-89, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32035147

RESUMEN

Maltooligosaccharides (MOSs) are emerging oligosaccharides in food-based applications and can be synthesized through the enzymatic synthesis of maltogenic amylase from Bacillus lehensis G1 (Mag1). However, the lack of enzyme stability makes this approach unrealistic for industrial applications. The formation of cross-linked enzyme aggregates (CLEAs) is a promising tool for improving enzyme stability, and the substrate accessibility problem of CLEA formation was overcome by the addition of porous agents to generate porous CLEAs (p-CLEAs). However, p-CLEAs exhibited high enzyme leaching and low solvent tolerance. To address these problems, p-CLEAs of Mag1 (Mag1-p-CLEAs) were entrapped in calcium alginate beads (CA). Mag1-p-CLEAs-CA prepared with 2.5% (w/v) sodium alginate and 0.6% (w/v) calcium chloride yielded 53.16% (17.0 U/mg) activity and showed a lower deactivation rate and longer half-life than those of entrapped free Mag1 (Mag1-CA) and entrapped non-porous Mag1-CLEAs (Mag1-CLEAs-CA). Moreover, Mag1-p-CLEAs-CA exhibited low enzyme leaching and high tolerance in various solvents compared to Mag1-p-CLEAs. A kinetic study revealed that Mag1-p-CLEAs-CA exhibited relatively high affinity towards beta-cyclodextrin (ß-CD) (Km = 0.62 mM). MOSs (300 mg/g) were synthesized by Mag1-p-CLEAs-CA at 50 °C. Finally, the reusability of Mag1-p-CLEAs-CA makes them as a potential biocatalyst for the continuous synthesis of MOSs.


Asunto(s)
Alginatos/metabolismo , Bacillus/metabolismo , Enzimas Inmovilizadas , Glicósido Hidrolasas/metabolismo , Oligosacáridos/biosíntesis , Alginatos/química , Bacillus/enzimología , Reactivos de Enlaces Cruzados , Estabilidad de Enzimas , Glicósido Hidrolasas/química , Hidrólisis , Cinética , Oligosacáridos/química , Porosidad , Agregado de Proteínas , Solventes , Temperatura
3.
Int J Biol Macromol ; 148: 1222-1231, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31759025

RESUMEN

Enzymatic synthesis of maltooligosaccharides is hampered due to lack of stability of soluble enzyme. This limitation can be tackled by cross linked enzyme aggregates (CLEAs) immobilization approach. However, substrate diffusion is a major bottleneck in cross linking technology. Herein, CLEAs of maltogenic amylase from Bacillus lehensis G1 (Mag1) was developed with addition of porous agent (Mag1-p-CLEAs). Comparison of thermal, pH and kinetic analysis with CLEAs without porous agent (Mag1-CLEAs) and free Mag1 was performed. Mag1-p-CLEAs with porous structure prepared at 0.8% (w/v) of citrus pectin (porous agent), 0.25% (w/v) of chitosan (cross linker) and cross linked for 1.5 h yielded 91.20% activity. 80% of activity is retained after 30 min of incubation at 40 °C and showed longer half-life than free Mag1 and Mag1-CLEAs. Mag1-p-CLEAs also showed pH stability at acidic and alkaline pH. The 1.68-fold increase in Vmax value in comparison to Mag1-CLEAs showed that the presence of pores of Mag1-p-CLEAs enhanced the beta-cyclodextrin accessibility. The increase in high catalytic efficiency (Kcat/Km) value, 1.90-fold and 1.05-fold showed that it also has better catalytic efficiency than free Mag1 and Mag1-CLEAs, respectively. Mag1-p-CLEAs not only improved substrate diffusibility of CLEAs, but also leads to higher thermal and pH stability of Mag1.


Asunto(s)
Bacillus/enzimología , Enzimas Inmovilizadas/química , Glicósido Hidrolasas/química , Agregado de Proteínas , Fenómenos Químicos , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Tamaño de la Partícula , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Especificidad por Sustrato , Termodinámica
4.
J Tradit Complement Med ; 7(4): 452-465, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29034193

RESUMEN

Natural antioxidants derived from plants have shown a tremendous inhibitory effect on free radicals in actively metabolizing cells. Overproduction of free radicals increases the risk factor of chronic diseases associated with diabetes, cancer, arthritis and cardiovascular disease. Andrographis paniculata, Cinnamon zeylanicum, Curcuma xanthorrhiza, Eugenia polyantha and Orthosiphon stamineus are ethnomedicinal plants used in the Asian region to treat various illnesses from a common fever to metabolic disease. In this study, we have quantified the total phenolic (TPC) and flavonoid content (TFC) in these plants and its inhibitory effect on 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals as well as the cytotoxicity effect on cell lines proliferation and zebrafish embryogenesis. Results showed that Cinnamon zeylanicum and E. polyantha have the highest phenolic and flavonoid content. Furthermore, both herbs significantly inhibited the formation of DPPH and ABTS free radicals. Meanwhile, O. stamineus exhibited minimum cytotoxicity and embryotoxicity on tested models. Good correlation between IC50 of 3T3-L1 cells and LC50 embyrotoxicity was also found. This study revealed the potent activity of antioxidant against free radical and the toxicology levels of the tested herbal plants.

5.
Metabolites ; 4(3): 580-98, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-25007314

RESUMEN

Rtg1 and Rtg3 are two basic helix-loop-helix (bHLH) transcription factors found in yeast Saccharomyces cerevisiae that are involved in the regulation of the mitochondrial retrograde (RTG) pathway. Under RTG response, anaplerotic synthesis of citrate is activated, consequently maintaining the supply of important precursors necessary for amino acid and nucleotide synthesis. Although the roles of Rtg1 and Rtg3 in TCA and glyoxylate cycles have been extensively reported, the investigation of other metabolic pathways has been lacking. Characteristic dimer formation in bHLH proteins, which allows for combinatorial gene expression, and the link between RTG and other regulatory pathways suggest more complex metabolic signaling involved in Rtg1/Rtg3 regulation. In this study, using a metabolomics approach, we examined metabolic alteration following RTG1 and RTG3 deletion. We found that apart from TCA and glyoxylate cycles, which have been previously reported, polyamine biosynthesis and other amino acid metabolism were significantly altered in RTG-deficient strains. We revealed that metabolic alterations occurred at various metabolic sites and that these changes relate to different growth phases, but the difference can be detected even at the mid-exponential phase, when mitochondrial function is repressed. Moreover, the effect of metabolic rearrangements can be seen through the chronological lifespan (CLS) measurement, where we confirmed the role of the RTG pathway in extending the yeast lifespan. Through a comprehensive metabolic profiling, we were able to explore metabolic phenotypes previously unidentified by other means and illustrate the possible correlations of Rtg1 and Rtg3 in different pathways.

6.
Artículo en Inglés | MEDLINE | ID: mdl-24974314

RESUMEN

Transcription factors (TFs) play an important role in gene regulation, providing control for cells to adapt to ever changing environments and different physiological states. Although great effort has been taken to study TFs through DNA-protein binding and microarray gene expression experiments, the understanding of transcriptional regulation is still lacking, due to lack of information that links TF regulatory events and final phenotypic change. Here, we focused on metabolites as the final readouts of gene transcription process. We performed metabolite profiling of 154 Saccharomyces cerevisiae's single gene knockouts each defective in a gene encoding transcription factor and built a metabolome library consists of 84 metabolites with good reproducibility. Using the metabolome dataset, we obtained significant correlations and identified differential strains that exhibit altered metabolism compared to control. This work presents a novel metabolome dataset library which will be invaluable for researchers working on transcriptional regulation and yeast biology in general.


Asunto(s)
Metaboloma/genética , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Bases de Datos Factuales , Biblioteca de Genes , Análisis de Componente Principal , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA