Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Genet Metab ; 123(4): 495-500, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29530534

RESUMEN

Deficiency of beta-glucocerebrosidase (GBA) leads to Gaucher disease (GD), an inherited disorder characterised by storage of glucosylceramide (GlcCer) in lysosomes of tissue macrophages. Macrophages activated by accumulated GlcCer secrete chitotriosidase. Plasma chitotriosidase activity is significantly elevated in patients with active GD and has been suggested to indicate total body Gaucher cell load. There are two biomarkers used to assess the severity of GD - chitotriosidase has been measured for over 20 years, and deacylated GlcCer, known as glucosylsphingosine (GlcSph) is thought to be even more adequate, as it is almost a direct storage substrate. In this paper we focused entirely on statistical analysis, performing a thorough search of possible relations, dependencies and differences in the levels of these two biomarkers in a cohort of 64 Polish GD patients. We found that the treatment of GD with enzyme replacement therapy (ERT) changes the distribution of the disease biomarkers; their levels follow a normal distribution only in untreated patients. The variable "disease biomarker level" was found dependent of the binary variable "treated with ERT or not". It was found independent of the following variables: "disease type", "splenectomized or not", and "heterozygous for 24-bp duplication for CHIT1 variant" or "CHIT1 wild type". An almost perfect linear correlation (coefficient of determination R2 = 0.99) between the chitotriosidase activity and GlcSph level was revealed in splenectomized patients.


Asunto(s)
Biomarcadores/sangre , Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/patología , Hexosaminidasas/metabolismo , Modelos Estadísticos , Psicosina/análogos & derivados , Enfermedad de Gaucher/clasificación , Humanos , Fenotipo , Psicosina/metabolismo
2.
Biomolecules ; 14(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062556

RESUMEN

Background: Gaucher disease (GD) is a lysosomal storage disorder caused by mutations in the GBA1 gene, leading to ß-glucocerebrosidase deficiency and glucosylceramide accumulation. Methods: We analyzed short- and long-term dynamics of lyso-glucosylceramide (lyso-Gb1) in a large cohort of GD patients undergoing enzyme replacement therapy (ERT). Results: Eight-years analysis of lyso-Gb1 revealed statistically insignificant variability in the biomarker across the years and relatively high individual variability in patients' results. GD type 1 (GD1) patients exhibited higher variability compared to GD type 3 (GD3) patients (coefficients of variation: 34% and 23%, respectively; p-value = 0.0003). We also investigated the short-term response of the biomarker to enzyme replacement therapy (ERT), measuring lyso-Gb1 right before and 30 min after treatment administration. We tested 20 GD patients (16 GD1, 4 GD3) and observed a rapid and significant reduction in lyso-Gb1 levels (average decrease of 17%; p-value < 0.0001). This immediate response reaffirms the efficacy of ERT in reducing substrate accumulation in GD patients but, on the other hand, suggests the biomarker's instability between the infusions. Conclusions: These findings underscore lyso-Gb1's potential as a reliable biomarker for monitoring efficacy of treatment. However, individual variability and dry blood spot (DBS) testing limitations urge a further refinement in clinical application. Our study contributes valuable insights into GD patient management, emphasizing the evolving role of biomarkers in personalized medicine.


Asunto(s)
Terapia de Reemplazo Enzimático , Enfermedad de Gaucher , Glucosilceramidasa , Humanos , Enfermedad de Gaucher/tratamiento farmacológico , Masculino , Femenino , Adulto , Persona de Mediana Edad , Glucosilceramidasa/genética , Glucosilceramidasa/uso terapéutico , Adolescente , Adulto Joven , Biomarcadores/sangre , Niño , Psicosina/metabolismo , Psicosina/análogos & derivados , Anciano , Preescolar
3.
Biomolecules ; 13(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37189391

RESUMEN

Gaucher disease (GD) is the most frequent sphingolipidosis, caused by biallelic pathogenic variants in the GBA1 gene encoding for ß-glucocerebrosidase (GCase, E.C. 3.2.1.45). The condition is characterized by hepatosplenomegaly, hematological abnormalities, and bone disease in both non-neuronopathic type 1 (GD1) and neuronopathic type 3 (GD3). Interestingly, GBA1 variants were found to be one of the most important risk factors for the development of Parkinson's disease (PD) in GD1 patients. We performed a comprehensive study regarding the two most disease-specific biomarkers, glucosylsphingosine (Lyso-Gb1) and α-synuclein for GD and PD, respectively. A total of 65 patients with GD treated with ERT (47 GD1 patients and 18 GD3 patients), 19 GBA1 pathogenic variant carriers (including 10 L444P carriers), and 16 healthy subjects were involved in the study. Lyso-Gb1 was assessed by dried blood spot testing. The level of α-synuclein as an mRNA transcript, total, and oligomer protein concentration were measured with real-time PCR and ELISA, respectively. α-synuclein mRNA level was found significantly elevated in GD3 patients and L444P carriers. GD1 patients, along with GBA1 carriers of an unknown or unconfirmed variant, as well as healthy controls, have the same low level of α-synuclein mRNA. There was no correlation found between the level of α-synuclein mRNA and age in GD patients treated with ERT, whereas there was a positive correlation in L444P carriers.


Asunto(s)
Enfermedad de Gaucher , Enfermedad de Parkinson , Humanos , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/patología , alfa-Sinucleína/metabolismo , Terapia de Reemplazo Enzimático , Enfermedad de Parkinson/genética , Heterocigoto , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA