Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
In Silico Pharmacol ; 12(2): 75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39155972

RESUMEN

Plant-derived phytochemicals from medicinal plants are becoming increasingly attractive natural sources of antimicrobial and antiviral agents due to their therapeutic value, mechanism of action, level of toxicity and bioavailability. The continued emergence of more immune-evasive strains and the rate of resistance to current antiviral drugs have created a need to identify new antiviral agents against SARS-CoV-2. This study investigated the antiviral potential of balsaminol, a bioactive compound from Momordica balsamina, and its inhibitory activities against SARS-CoV-2 receptor proteins. In this study, three Food and Drug Administration (FDA) COVID-19 approved drugs namely; nirmatrelvir, ritonavir and remdesivir were used as positive control. Molecular docking was performed to determine the predominant binding mode (most negative Gibbs free energy of binding/ΔG) and inhibitory activity of balsaminol against SARS-CoV-2 receptor proteins. The pharmacokinetics, toxicity, physicochemical and drug-like properties of balsaminol were evaluated to determine its potential as an active oral drug candidate as well as its non-toxicity in humans. The results show that balsaminol E has the highest binding affinity to the SARS CoV-2 papain-like protease (7CMD) with a free binding energy of - 8.7 kcal/mol, followed by balsaminol A interacting with the spike receptor binding domain (6VW1) with - 8.5 kcal/mol and balsaminol C had a binding energy of - 8.1 kcal/mol with the main protease (6LU7) comparable to the standard drugs namely ritonavir, nirmatrelvir and remdesivir. However, the ADMET and drug-like profile of balsaminol F favours it as a better potential drug candidate and inhibitor of the docked SARS-CoV-2 receptor proteins. Further preclinical studies are therefore recommended. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00241-0.

2.
J Anal Methods Chem ; 2022: 6349332, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569176

RESUMEN

The exploration of medicinal plants in traditional medicine for the treatment of diseases has been practiced for long, globally, because of its cultural acceptability, availability, and affordability. This study investigated the qualitative and quantitative estimation of phytochemicals present in Ficus platyphylla stem bark as well as determined the reducing power and antioxidant property of each fraction against DPPH and NO radicals. The study further elucidated the presence of possible compounds in different fractions (methanol, ethyl acetate, petroleum ether, and chloroform) of Ficus platyphylla stem bark (FPSB) extract using GC-MS, LC-MS, and FTIR techniques. Qualitative phytochemical analysis reveals the presence of phytochemicals: saponin, flavonoids, tannins, phenols, steroids, alkaloids, and glycoside in the ethanolic extract. The LC-MS study of methanol and ethyl acetate fractions reveals the presence of thirteen and three compounds, respectively. GC-MS analysis shows the presence of trans-13-octadecenoic acid as the main compound 38.07% and cis-vaccenic acid as the least compound (0.10%) in the petroleum ether fraction. The main compound in the chloroform fraction is 12-oleanen-3-yl acetate, (3. alpha.) with a peak area percentage of 49.25% and oleic acid been the least compound with 0.07% peak area. The FTIR analysis reveals that the fractions contain compounds with hydroxyl, aromatic, methyl, methylene, methyne, long aliphatic chain, ethers, ether-oxy, peroxides, etc. The analyzed fractions reveal compounds with potential pharmacological activity in the management of pathological conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA