Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nano Lett ; 22(12): 4718-4724, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35671172

RESUMEN

Transition-metal dichalcogenide monolayers and heterostructures are highly tunable material systems that provide excellent models for physical phenomena at the two-dimensional (2D) limit. While most studies to date have focused on electrons and electron-hole pairs, phonons also play essential roles. Here, we apply ultrafast electron diffraction and diffuse scattering to directly quantify, with time and momentum resolution, electron-phonon coupling (EPC) in monolayer molybdenum disulfide and phonon transport from the monolayer to a silicon nitride substrate. Optically generated hot carriers result in a profoundly anisotropic distribution of phonons in the monolayer within ∼5 ps. A quantitative comparison with ab initio ultrafast dynamics simulations reveals the essential role of dielectric screening in weakening EPC. Thermal transport from the monolayer to the substrate occurs with the phonon system far from equilibrium. While screening in 2D is known to strongly affect equilibrium properties, our findings extend this understanding to the dynamic regime.

2.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36200872

RESUMEN

Pistachio (Pistacia vera L.) is consumed in almost every part of the world enclosed in shells that are thrown out in baskets. Similarly, hulls separated from pistachio are discarded as waste in food processing industries. These waste materials contain functional constituents having immense industrial and nutraceutical applications. This review article summarizes the scientific investigations regarding the functional constituents and bioactive compounds in pistachio shells (PSs) and pistachio hulls (PHs). It also highlights the nutraceutical potential exhibited by functionally active compounds as well as their potential applications in various industries including nutraceutical, medicinal, and feed industries together with biosynthetic development of useful products and wastewater treatment. Pistachio waste (PW) comprising PS and PH is a rich source of various bioactive compounds. PS is full of lignin, cellulose, and hemicellulose. PH is an excellent source of carbohydrates (80.64 ±â€¯0.98%) (including glucose, galactose, rhamnose, arabinose, xylose, mannose, galacturonic acid) as well as ash (6.32 ±â€¯0.26%) and proteins (1.80 ±â€¯0.28%) with small amounts of fats (0.04 ±â€¯0.005%). Owing to its composition, PW can be beneficial in many nutraceuticals, including antioxidation, cytoprotection, anti-obesity, anti-diabetic, anti-melanogenesis, neuroprotection, anti-cancer, anti-mutagenesis, anti-inflammation, and anti-microbial. The waste materials have vast applications in the food industry, such as bio-preservation of oils and meat products, prevention of enzymatic browning in fruits, vegetables, and mushrooms, development of functional cereal and dairy products, production of food enzymes, emulsions, and manufacturing of biodegradable films for food packaging. The use of these waste products to develop and design novel functional foods with improved quality is important for both food industries and food sustainability.

3.
Sensors (Basel) ; 21(12)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205247

RESUMEN

Enabled by the fifth-generation (5G) and beyond 5G communications, large-scale deployments of Internet-of-Things (IoT) networks are expected in various application fields to handle massive machine-type communication (mMTC) services. Device-to-device (D2D) communications can be an effective solution in massive IoT networks to overcome the inherent hardware limitations of small devices. In such D2D scenarios, given that a receiver can benefit from the signal-to-noise-ratio (SNR) advantage through diversity and array gains, cooperative transmission (CT) can be employed, so that multiple IoT nodes can create a virtual antenna array. In particular, Opportunistic Large Array (OLA), which is one type of CT technique, is known to provide fast, energy-efficient, and reliable broadcasting and unicasting without prior coordination, which can be exploited in future mMTC applications. However, OLA-based protocol design and operation are subject to network models to characterize the propagation behavior and evaluate the performance. Further, it has been shown through some experimental studies that the most widely-used model in prior studies on OLA is not accurate for networks with networks with low node density. Therefore, stochastic models using quasi-stationary Markov chain are introduced, which are more complex but more exact to estimate the key performance metrics of the OLA transmissions in practice. Considering the fact that such propagation models should be selected carefully depending on system parameters such as network topology and channel environments, we provide a comprehensive survey on the analytical models and framework of the OLA propagation in the literature, which is not available in the existing survey papers on OLA protocols. In addition, we introduce energy-efficient OLA techniques, which are of paramount importance in energy-limited IoT networks. Furthermore, we discuss future research directions to combine OLA with emerging technologies.

4.
Sensors (Basel) ; 20(24)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322155

RESUMEN

Quaternion orthogonal designs (QODs) have been used to design STBCs that provide improved performance in terms of various design parameters. In this paper, we show that all QODs obtained from generic iterative construction techniques based on the Adams-Lax-Phillips approach have linear and decoupled decoders which significantly reduce the computational complexity at the receiver. Our result is based on the quaternionic description of communication channels among dual-polarized antennas. Another contribution of this work is the linear and decoupled decoder for quasi-orthogonal codes for non-square as well as square designs. The proposed solution promises diversity gains with the quaternionic channel model and the decoding solution is independent of the number of receive dual-polarized antennas. A brief comparison is presented at the end to demonstrate the effectiveness of quaternion designs in two dual-polarized antennas over available STBCs for four single-polarized antennas. Linear and decoupled decoding of two quasi-orthogonal designs is shown, which has failed to exit previously. In addition, a QOD for 2×1 dual-polarized antenna configuration using quaternionic channel model shows a 3 dB gain at 10-5 in comparison to the same code evaluated for 2×2 complex representation of the quaternionic channel. This gain is further enhanced when the received diversity for these the cases is matched i.e., 2×2. The code using the quaternionic channel model shows a further 13 dB improvement at 10-5 BER.

5.
Sensors (Basel) ; 19(21)2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31689959

RESUMEN

This paper presents cooperative transmission (CT), where multiple relays are used to achieve array and diversity gains, as an enabling technology for Internet of Things (IoT) networks with hardware-limited devices. We investigate a channel coding aided decode-and-forward (DF) relaying network, considering a two-hop multiple-relay network, where the data transmission between the source and the destination is realized with the help of DF relays. Low density parity check (LDPC) codes are adopted as forward error correction (FEC) codes to encode and decode the data both at the source and relays. We consider both fixed and variable code rates depending upon the quality-of-service (QoS) provisioning such as spectral efficiency and maximum energy efficiency. Furthermore, an optimal power allocation scheme is studied for the cooperative system under the energy efficiency constraint. We present the simulation results of our proposed scheme, compared with conventional methods, which show that if decoupled code rates are used on both hops then a trade-off has to be maintained between system complexity, transmission delay, and bit error rate (BER).

6.
Sensors (Basel) ; 19(17)2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31480709

RESUMEN

Internet of Things (IoT)-based automation of agricultural events can change the agriculture sector from being static and manual to dynamic and smart, leading to enhanced production with reduced human efforts. Precision Agriculture (PA) along with Wireless Sensor Network (WSN) are the main drivers of automation in the agriculture domain. PA uses specific sensors and software to ensure that the crops receive exactly what they need to optimize productivity and sustainability. PA includes retrieving real data about the conditions of soil, crops and weather from the sensors deployed in the fields. High-resolution images of crops are obtained from satellite or air-borne platforms (manned or unmanned), which are further processed to extract information used to provide future decisions. In this paper, a review of near and remote sensor networks in the agriculture domain is presented along with several considerations and challenges. This survey includes wireless communication technologies, sensors, and wireless nodes used to assess the environmental behaviour, the platforms used to obtain spectral images of crops, the common vegetation indices used to analyse spectral images and applications of WSN in agriculture. As a proof of concept, we present a case study showing how WSN-based PA system can be implemented. We propose an IoT-based smart solution for crop health monitoring, which is comprised of two modules. The first module is a wireless sensor network-based system to monitor real-time crop health status. The second module uses a low altitude remote sensing platform to obtain multi-spectral imagery, which is further processed to classify healthy and unhealthy crops. We also highlight the results obtained using a case study and list the challenges and future directions based on our work.


Asunto(s)
Agricultura/métodos , Tecnología Inalámbrica , Redes de Comunicación de Computadores , Productos Agrícolas , Humanos , Tecnología de Sensores Remotos
7.
Food Chem ; 460(Pt 1): 140542, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39079380

RESUMEN

Food fraud is widespread nowadays in the food products supply chain, from raw materials processing to the final product and during storage and transport. The most frequent fraud is practiced in staple food commodities like cereals. Their origin, variety, genotype, and bioactive compounds are altered to deceive consumers. Similarly, in various food sectors like beverage, baking, and confectionary, items like melamine, flour improver, and food colors are used in the market to temple consumers. To tackle food fraud and authentication, non-destructive techniques are being used. These techniques have limitations like lack of standardization, interference from multiple absorbing species, ambiguous results, and time-consuming to perform, depending on the type, size, and location of the system proved difficult to quantify the samples of adulteration. Chromatography has been introduced as an effective technique. It serves to safeguard public health due to its detection capabilities. Chromatography proved a crucial tool against fraudulent practices to preserve consumer trust.


Asunto(s)
Contaminación de Alimentos , Fraude , Salud Pública , Contaminación de Alimentos/análisis , Fraude/prevención & control , Humanos , Cromatografía , Análisis de los Alimentos
8.
Food Chem X ; 23: 101518, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38952562

RESUMEN

The focus on sustainable utilization of agricultural waste is currently a leading area of scientific research, driving significant advancements in technology and circular economy models. The fundamental capacity of bio-based products, bioprocessing techniques, and the crucial involvement of microbial treatments are opening opportunities for efficient solutions in various industries. One of the most popular green vegetables, peas are members of the Fabaceae family and have a pod-like structure. Every year, a significant amount of pea pods is discarded as waste products of peas that have negative impacts on our environment. In this comprehensive review, we explore innovative methods for utilizing pea pods to minimize their environmental footprint and optimize their viability across multiple industries. A large portion of the pea processing industry's output consists of pea pods. Variety of proteins, with major classes being globulin and albumin (13%), dietary fiber (43-58%), and minerals are abundant in these pods. Because of their diverse physiochemical properties, they find applications in many diverse fields. The porous pea pods comprised cellulose (61.35%) and lignin (22.12%), which could make them superior adsorbents. The components of these byproducts possess valuable attributes that make them applicable across treatment of wastewater, production of biofuels, synthesis of biocolors, development of nutraceuticals, functional foods, and enzymes for the textile industry, modification of oil, and inhibition of steel corrosion.

9.
Ultrason Sonochem ; 102: 106744, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38219546

RESUMEN

Food waste presents a continuous challenge for the food industry, leading to environmental pollution and economic issues. A substantial amount of waste, including by-products from fruits and vegetables, non-edible food items, and other waste materials, is produced throughout the food supply chain, from production to consumption. Recycling and valorizing waste from perishable goods is emerging as a key multidisciplinary approach within the circular bio-economy framework. This waste, rich in raw by-products, can be repurposed as a natural source of ingredients. Researchers increasingly focus on biomass valorization to extract and use components that add significant value. Traditional methods for extracting these bio-compounds typically require the use of solvents and are time-consuming, underscoring the need for innovative techniques like ultrasound (US) extraction. Wastes from the processing of fruits and vegetables in the food industry can be used to develop functional foods and edible coatings, offering protection against various environmental factors. This comprehensive review paper discusses the valorization of waste from perishable items like fruits and vegetables using US technology, not only to extract valuable components from waste but also to treat wastewater in the beverage industry. It also covers the application of biomolecules recovered from this process in the development of functional foods and packaging.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Frutas , Verduras , Industria de Alimentos , Tecnología
10.
Food Chem X ; 23: 101533, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39036474

RESUMEN

Protein malnutrition is a major public health concern in the developing world. The livestock products are a good source of high-quality protein, but the livestock industry is a source of pollution and one of the leading causes of climate change because the slaughtering of animals results in the accumulation of waste, offals, and several inedible body portions. The rapid increase in the human population and inadequate supply of traditional protein sources have driven a search for novel and alternative protein sources such as edible insects. This review extensively explores the nutritional value, allergenicity, and safety considerations associated with consuming common house crickets and other related insect species. A wide range of cricket protein-based products are currently available and provide some attractive options to the consumers such as protein-enriched bakery products and gluten-free bread for celiac patients. The cricket protein hydrolysates are used as preservatives to improve the stability of cheddar cheese and goat meat emulsions during storage. The risks associated with edible crickets and their products are bacteria, mycotoxins, polychlorinated dibenzodioxins, pesticide residues, heavy metals, and the presence of allergenic proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA