Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 630(8018): 968-975, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867043

RESUMEN

Obesity is a leading risk factor for progression and metastasis of many cancers1,2, yet can in some cases enhance survival3-5 and responses to immune checkpoint blockade therapies, including anti-PD-1, which targets PD-1 (encoded by PDCD1), an inhibitory receptor expressed on immune cells6-8. Although obesity promotes chronic inflammation, the role of the immune system in the obesity-cancer connection and immunotherapy remains unclear. It has been shown that in addition to T cells, macrophages can express PD-19-12. Here we found that obesity selectively induced PD-1 expression on tumour-associated macrophages (TAMs). Type I inflammatory cytokines and molecules linked to obesity, including interferon-γ, tumour necrosis factor, leptin, insulin and palmitate, induced macrophage PD-1 expression in an mTORC1- and glycolysis-dependent manner. PD-1 then provided negative feedback to TAMs that suppressed glycolysis, phagocytosis and T cell stimulatory potential. Conversely, PD-1 blockade increased the level of macrophage glycolysis, which was essential for PD-1 inhibition to augment TAM expression of CD86 and major histocompatibility complex I and II molecules and ability to activate T cells. Myeloid-specific PD-1 deficiency slowed tumour growth, enhanced TAM glycolysis and antigen-presentation capability, and led to increased CD8+ T cell activity with a reduced level of markers of exhaustion. These findings show that obesity-associated metabolic signalling and inflammatory cues cause TAMs to induce PD-1 expression, which then drives a TAM-specific feedback mechanism that impairs tumour immune surveillance. This may contribute to increased cancer risk yet improved response to PD-1 immunotherapy in obesity.


Asunto(s)
Neoplasias , Obesidad , Receptor de Muerte Celular Programada 1 , Macrófagos Asociados a Tumores , Animales , Femenino , Humanos , Masculino , Ratones , Presentación de Antígeno/efectos de los fármacos , Antígeno B7-2/antagonistas & inhibidores , Antígeno B7-2/inmunología , Antígeno B7-2/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Glucólisis/efectos de los fármacos , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Activación de Linfocitos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Obesidad/inmunología , Obesidad/metabolismo , Fagocitosis/efectos de los fármacos , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/efectos de los fármacos
3.
bioRxiv ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39026793

RESUMEN

Lipid metabolism is fundamental to CD4+ T cell metabolism yet remains poorly understood across subsets. Therefore, we performed targeted in vivo CRISPR/Cas9 screens to identify lipid-associated genes essential for T cell subset functions. These screens established mitochondrial fatty acid synthesis (mtFAS) genes Mecr, Mcat and Oxsm as highly impactful. Of these, the inborn error of metabolism gene Mecr was most dynamically regulated. Effector and memory T cells were reduced in Mecrfl/fl; Cd4cre mice, and MECR was required for activated CD4+ T cells to efficiently proliferate, differentiate, and survive. Mecr-deficient T cells also had decreased mitochondrial respiration, reduced TCA intermediates, and accumulated intracellular iron, which contributed to cell death and sensitivity to ferroptosis. Importantly, Mecr-deficient T cells exhibited fitness disadvantages in inflammatory, tumor, and infection models. mtFAS and MECR thus play important roles in activated T cells and may provide targets to modulate immune functions in inflammatory diseases. The immunological state of MECR- and mtFAS-deficient patients may also be compromised.

4.
J Clin Invest ; 134(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618956

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is characterized by dysregulated hypoxia signaling and a tumor microenvironment (TME) highly enriched in myeloid and lymphoid cells. Loss of the von Hippel Lindau (VHL) gene is a critical early event in ccRCC pathogenesis and promotes stabilization of HIF. Whether VHL loss in cancer cells affects immune cells in the TME remains unclear. Using Vhl WT and Vhl-KO in vivo murine kidney cancer Renca models, we found that Vhl-KO tumors were more infiltrated by immune cells. Tumor-associated macrophages (TAMs) from Vhl-deficient tumors demonstrated enhanced in vivo glucose consumption, phagocytosis, and inflammatory transcriptional signatures, whereas lymphocytes from Vhl-KO tumors showed reduced activation and a lower response to anti-programmed cell death 1 (anti-PD-1) therapy in vivo. The chemokine CX3CL1 was highly expressed in human ccRCC tumors and was associated with Vhl deficiency. Deletion of Cx3cl1 in cancer cells decreased myeloid cell infiltration associated with Vhl loss to provide a mechanism by which Vhl loss may have contributed to the altered immune landscape. Here, we identify cancer cell-specific genetic features that drove environmental reprogramming and shaped the tumor immune landscape, with therapeutic implications for the treatment of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Humanos , Ratones , Carcinogénesis/genética , Carcinoma de Células Renales/genética , Transformación Celular Neoplásica , Riñón , Neoplasias Renales/genética , Microambiente Tumoral , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA