RESUMEN
An unambiguous description of an experiment, and the subsequent biological observation, is vital for accurate data interpretation. Minimum information guidelines define the fundamental complement of data that can support an unambiguous conclusion based on experimental observations. We present the Minimum Information About Disorder Experiments (MIADE) guidelines to define the parameters required for the wider scientific community to understand the findings of an experiment studying the structural properties of intrinsically disordered regions (IDRs). MIADE guidelines provide recommendations for data producers to describe the results of their experiments at source, for curators to annotate experimental data to community resources and for database developers maintaining community resources to disseminate the data. The MIADE guidelines will improve the interpretability of experimental results for data consumers, facilitate direct data submission, simplify data curation, improve data exchange among repositories and standardize the dissemination of the key metadata on an IDR experiment by IDR data sources.
Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Conformación ProteicaRESUMEN
Proteins form complex interactions in the cellular environment to carry out their functions. They exhibit a wide range of binding modes depending on the cellular conditions, which result in a variety of ordered or disordered assemblies. To help rationalise the binding behavior of proteins, the FuzPred server predicts their sequence-based binding modes without specifying their binding partners. The binding mode defines whether the bound state is formed through a disorder-to-order transition resulting in a well-defined conformation, or through a disorder-to-disorder transition where the binding partners remain conformationally heterogeneous. To account for the context-dependent nature of the binding modes, the FuzPred method also estimates the multiplicity of binding modes, the likelihood of sampling multiple binding modes. Protein regions with a high multiplicity of binding modes may serve as regulatory sites or hot-spots for structural transitions in the assembly. To facilitate the interpretation of the predictions, protein regions with different interaction behaviors can be visualised on protein structures generated by AlphaFold. The FuzPred web server (https://fuzpred.bio.unipd.it) thus offers insights into the structural and dynamical changes of proteins upon interactions and contributes to development of structure-function relationships under a variety of cellular conditions.
Asunto(s)
Computadores , Proteínas , Conformación Proteica , Proteínas/química , Dominios Proteicos , Programas InformáticosRESUMEN
Many proteins perform their functions within membraneless organelles, where they form a liquid-like condensed state, also known as droplet state. The FuzDrop method predicts the probability of spontaneous liquid-liquid phase separation of proteins and provides a sequence-based score to identify the regions that promote this process. Furthermore, the FuzDrop method estimates the propensity of conversion of proteins to the amyloid state, and identifies aggregation hot-spots, which can drive the irreversible maturation of the liquid-like droplet state. These predictions can also identify mutations that can induce formation of amyloid aggregates, including those implicated in human diseases. To facilitate the interpretation of the predictions, the droplet-promoting and aggregation-promoting regions can be visualized on protein structures generated by AlphaFold. The FuzDrop server (https://fuzdrop.bio.unipd.it) thus offers insights into the complex behavior of proteins in their condensed states and facilitates the understanding of the functional relationships of proteins.
Asunto(s)
Amiloide , Conformación Proteica , Programas Informáticos , Humanos , Amiloide/genética , Amiloide/química , MutaciónRESUMEN
Fuzzy interactions are specific, variable contacts between proteins and other biomolecules (proteins, DNA, RNA, small molecules) formed in accord to the cellular context. Fuzzy interactions have recently been demonstrated to regulate biomolecular condensates generated by liquid-liquid phase separation. The FuzDB v4.0 database (https://fuzdb.org) assembles experimentally identified examples of fuzzy interactions, where disordered regions mediate functionally important, context-dependent contacts between the partners in stoichiometric and higher-order assemblies. The new version of FuzDB establishes cross-links with databases on structure (PDB, BMRB, PED), function (ELM, UniProt) and biomolecular condensates (PhaSepDB, PhaSePro, LLPSDB). FuzDB v4.0 is a source to decipher molecular basis of complex cellular interaction behaviors, including those in protein droplets.
Asunto(s)
ADN/metabolismo , Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas/metabolismo , ARN/metabolismo , Programas Informáticos , Secuencia de Aminoácidos , Sitios de Unión , ADN/química , ADN/genética , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Modelos Moleculares , Anotación de Secuencia Molecular , Transición de Fase , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN/química , ARN/genética , Relación Estructura-ActividadRESUMEN
The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.
Asunto(s)
Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas/metabolismo , Anotación de Secuencia Molecular , Programas Informáticos , Secuencia de Aminoácidos , ADN/genética , ADN/metabolismo , Conjuntos de Datos como Asunto , Ontología de Genes , Humanos , Internet , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Unión Proteica , ARN/genética , ARN/metabolismoRESUMEN
The MobiDB database (URL: https://mobidb.org/) provides predictions and annotations for intrinsically disordered proteins. Here, we report recent developments implemented in MobiDB version 4, regarding the database format, with novel types of annotations and an improved update process. The new website includes a re-designed user interface, a more effective search engine and advanced API for programmatic access. The new database schema gives more flexibility for the users, as well as simplifying the maintenance and updates. In addition, the new entry page provides more visualisation tools including customizable feature viewer and graphs of the residue contact maps. MobiDB v4 annotates the binding modes of disordered proteins, whether they undergo disorder-to-order transitions or remain disordered in the bound state. In addition, disordered regions undergoing liquid-liquid phase separation or post-translational modifications are defined. The integrated information is presented in a simplified interface, which enables faster searches and allows large customized datasets to be downloaded in TSV, Fasta or JSON formats. An alternative advanced interface allows users to drill deeper into features of interest. A new statistics page provides information at database and proteome levels. The new MobiDB version presents state-of-the-art knowledge on disordered proteins and improves data accessibility for both computational and experimental users.
Asunto(s)
Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas/química , Algoritmos , Internet , Anotación de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Programas InformáticosRESUMEN
The Protein Ensemble Database (PED) (https://proteinensemble.org), which holds structural ensembles of intrinsically disordered proteins (IDPs), has been significantly updated and upgraded since its last release in 2016. The new version, PED 4.0, has been completely redesigned and reimplemented with cutting-edge technology and now holds about six times more data (162 versus 24 entries and 242 versus 60 structural ensembles) and a broader representation of state of the art ensemble generation methods than the previous version. The database has a completely renewed graphical interface with an interactive feature viewer for region-based annotations, and provides a series of descriptors of the qualitative and quantitative properties of the ensembles. High quality of the data is guaranteed by a new submission process, which combines both automatic and manual evaluation steps. A team of biocurators integrate structured metadata describing the ensemble generation methodology, experimental constraints and conditions. A new search engine allows the user to build advanced queries and search all entry fields including cross-references to IDP-related resources such as DisProt, MobiDB, BMRB and SASBDB. We expect that the renewed PED will be useful for researchers interested in the atomic-level understanding of IDP function, and promote the rational, structure-based design of IDP-targeting drugs.
Asunto(s)
Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas/química , Humanos , Motor de Búsqueda , Proteína p53 Supresora de Tumor/químicaRESUMEN
The Database of Protein Disorder (DisProt, URL: https://disprot.org) provides manually curated annotations of intrinsically disordered proteins from the literature. Here we report recent developments with DisProt (version 8), including the doubling of protein entries, a new disorder ontology, improvements of the annotation format and a completely new website. The website includes a redesigned graphical interface, a better search engine, a clearer API for programmatic access and a new annotation interface that integrates text mining technologies. The new entry format provides a greater flexibility, simplifies maintenance and allows the capture of more information from the literature. The new disorder ontology has been formalized and made interoperable by adopting the OWL format, as well as its structure and term definitions have been improved. The new annotation interface has made the curation process faster and more effective. We recently showed that new DisProt annotations can be effectively used to train and validate disorder predictors. We believe the growth of DisProt will accelerate, contributing to the improvement of function and disorder predictors and therefore to illuminate the 'dark' proteome.
Asunto(s)
Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas/química , Ontologías Biológicas , Curaduría de Datos , Anotación de Secuencia MolecularRESUMEN
Post-translational modification (PTM) sites have become popular for predictor development. However, with the exception of phosphorylation and a handful of other examples, PTMs suffer from a limited number of available training examples and sparsity in protein sequences. Here, proline hydroxylation is taken as an example to compare different methods and evaluate their performance on new experimentally determined sites. As a guide for effective experimental design, predictors require both high specificity and sensitivity. However, the self-reported performance may often not be indicative of prediction quality and detection of new sites is not guaranteed. We have benchmarked seven published hydroxylation site predictors on two newly constructed independent datasets. The self-reported performance is found to widely overestimate the real accuracy measured on independent datasets. No predictor performs better than random on new examples, indicating the refined models do not sufficiently generalize to detect new sites. The number of false positives is high and precision low, in particular for non-collagen proteins whose motifs are not conserved. As hydroxylation site predictors do not generalize for new data, caution is advised when using PTM predictors in the absence of independent evaluations, in particular for highly specific sites involved in signalling.
Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Células HeLa , Humanos , Hidroxilación , Transducción de SeñalRESUMEN
The Database of Protein Disorder (DisProt, URL: www.disprot.org) has been significantly updated and upgraded since its last major renewal in 2007. The current release holds information on more than 800 entries of IDPs/IDRs, i.e. intrinsically disordered proteins or regions that exist and function without a well-defined three-dimensional structure. We have re-curated previous entries to purge DisProt from conflicting cases, and also upgraded the functional classification scheme to reflect continuous advance in the field in the past 10 years or so. We define IDPs as proteins that are disordered along their entire sequence, i.e. entirely lack structural elements, and IDRs as regions that are at least five consecutive residues without well-defined structure. We base our assessment of disorder strictly on experimental evidence, such as X-ray crystallography and nuclear magnetic resonance (primary techniques) and a broad range of other experimental approaches (secondary techniques). Confident and ambiguous annotations are highlighted separately. DisProt 7.0 presents classified knowledge regarding the experimental characterization and functional annotations of IDPs/IDRs, and is intended to provide an invaluable resource for the research community for a better understanding structural disorder and for developing better computational tools for studying disordered proteins.
Asunto(s)
Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas , Animales , Cristalografía por Rayos X , Transferencia Resonante de Energía de Fluorescencia , Predicción , Control de Formularios y Registros , Humanos , Proteínas Intrínsecamente Desordenadas/clasificación , Resonancia Magnética Nuclear Biomolecular , Conformación ProteicaRESUMEN
DisProt is the major repository of manually curated data for intrinsically disordered proteins collected from the literature. Although lacking a stable three-dimensional structure under physiological conditions, intrinsically disordered proteins carry out a plethora of biological functions, some of them directly arising from their flexible nature. A growing number of scientific studies have been published during the last few decades to shed light on their unstructured state, their binding modes, and their functions. DisProt makes use of a team of expert biocurators to provide up-to-date annotations of intrinsically disordered proteins from the literature, making them available to the scientific community. Here we present a comprehensive description on how to use DisProt in different contexts and provide a detailed explanation of how to explore and interpret manually curated annotations of intrinsically disordered proteins. We describe how to search DisProt annotations, both using the web interface and the API for programmatic access. Finally, we explain how to visualize and interpret a DisProt entry, the SARS-CoV-2 Nucleoprotein, characterized by the presence of unstructured N-terminal and C-terminal regions and a flexible linker. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Performing a search in DisProt Support Protocol 1: Downloading options Support Protocol 2: Programmatic access with DisProt REST API Basic Protocol 2: Exploring the DisProt Ontology page Basic Protocol 3: Visualizing and interpreting DisProt entries-the SARS-CoV-2 Nucleoprotein use case.
Asunto(s)
COVID-19 , Proteínas Intrínsecamente Desordenadas , Humanos , Nucleoproteínas , SARS-CoV-2RESUMEN
While scientists can often infer the biological function of proteins from their 3-dimensional quaternary structures, the gap between the number of known protein sequences and their experimentally determined structures keeps increasing. A potential solution to this problem is presented by ever more sophisticated computational protein modeling approaches. While often powerful on their own, most methods have strengths and weaknesses. Therefore, it benefits researchers to examine models from various model providers and perform comparative analysis to identify what models can best address their specific use cases. To make data from a large array of model providers more easily accessible to the broader scientific community, we established 3D-Beacons, a collaborative initiative to create a federated network with unified data access mechanisms. The 3D-Beacons Network allows researchers to collate coordinate files and metadata for experimentally determined and theoretical protein models from state-of-the-art and specialist model providers and also from the Protein Data Bank.
Asunto(s)
Metadatos , Registros , Secuencia de Aminoácidos , Bases de Datos de Proteínas , Simulación por ComputadorRESUMEN
APICURON is an open and freely accessible resource that tracks and credits the work of biocurators across multiple participating knowledgebases. Biocuration is essential to extract knowledge from research data and make it available in a structured and standardized way to the scientific community. However, processing biological data-mainly from literature-requires a huge effort that is difficult to attribute and quantify. APICURON collects biocuration events from third-party resources and aggregates this information, spotlighting biocurator contributions. APICURON promotes biocurator engagement implementing gamification concepts like badges, medals and leaderboards and at the same time provides a monitoring service for registered resources and for biocurators themselves. APICURON adopts a data model that is flexible enough to represent and track the majority of biocuration activities. Biocurators are identified through their Open Researcher and Contributor ID. The definition of curation events, scoring systems and rules for assigning badges and medals are resource-specific and easily customizable. Registered resources can transfer curation activities on the fly through a secure and robust Application Programming Interface (API). Here, we show how simple and effective it is to connect a resource to APICURON, describing the DisProt database of intrinsically disordered proteins as a use case. We believe APICURON will provide biological knowledgebases with a service to recognize and credit the effort of their biocurators, monitor their activity and promote curator engagement. Database URL: https://apicuron.org.
Asunto(s)
Proteínas Intrínsecamente Desordenadas , Programas Informáticos , Bases de Datos Factuales , Conocimiento , Bases del ConocimientoRESUMEN
The Protein Ensemble Database (PED; https://proteinensemble.org/) is the major repository of conformational ensembles of intrinsically disordered proteins (IDPs). Conformational ensembles of IDPs are primarily provided by their authors or occasionally collected from literature, and are subsequently deposited in PED along with the corresponding structured, manually curated metadata. The modeling of conformational ensembles usually relies on experimental data from small-angle X-ray scattering (SAXS), fluorescence resonance energy transfer (FRET), NMR spectroscopy, and molecular dynamics (MD) simulations, or a combination of these techniques. The growing number of scientific studies based on these data, along with the astounding and swift progress in the field of protein intrinsic disorder, has required a significant update and upgrade of PED, first published in 2014. To this end, the database was entirely renewed in 2020 and now has a dedicated team of biocurators providing manually curated descriptions of the methods and conditions applied to generate the conformational ensembles and for checking consistency of the data. Here, we present a detailed description on how to explore PED with its protein pages and experimental pages, and how to interpret entries of conformational ensembles. We describe how to efficiently search conformational ensembles deposited in PED by means of its web interface and API. We demonstrate how to make sense of the PED protein page and its associated experimental entry pages with reference to the yeast Sic1 use case. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Performing a search in PED Support Protocol 1: Programmatic access with the PED API Basic Protocol 2: Interpreting the protein page and the experimental entry page-the Sic1 use case Support Protocol 2: Downloading options Support Protocol 3: Understanding the validation report-the Sic1 use case Basic Protocol 3: Submitting new conformational ensembles to PED Basic Protocol 4: Providing feedback in PED.
Asunto(s)
Proteínas Intrínsecamente Desordenadas , Bases de Datos de Proteínas , Simulación de Dinámica Molecular , Dispersión del Ángulo Pequeño , Difracción de Rayos XRESUMEN
DisProt is the major repository of manually curated data for intrinsically disordered proteins collected from the literature. Although lacking a stable tertiary structure under physiological conditions, intrinsically disordered proteins carry out a plethora of biological functions, some of them directly arising from their flexible nature. A growing number of scientific studies have been published during the last few decades in an effort to shed light on their unstructured state, their binding modes, and their functions. DisProt makes use of a team of expert biocurators to provide up-to-date annotations of intrinsically disordered proteins from the literature, making them available to the scientific community. Here we present a comprehensive description on how to use DisProt in different contexts and provide a detailed explanation of how to explore and interpret manually curated annotations of intrinsically disordered proteins. We describe how to search DisProt annotations, using both the web interface and the API for programmatic access. Finally, we explain how to visualize and interpret a DisProt entry, p53, a widely studied protein characterized by the presence of unstructured N-terminal and C-terminal regions. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Performing a search in DisProt Support Protocol 1: Downloading options Support Protocol 2: Programmatic access with DisProt REST API Basic Protocol 2: Visualizing and interpreting DisProt entries: the p53 use case Basic Protocol 3: Providing feedback and submitting new intrinsic disorder-related data.
Asunto(s)
Biología Computacional , Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas/química , Curaduría de Datos , Humanos , Conformación Proteica , Interfaz Usuario-ComputadorRESUMEN
Nowadays, it is well established that many proteins or regions under physiological conditions lack a fixed three-dimensional structure and are intrinsically disordered. MobiDB is the main repository of protein disorder and mobility annotations, combining different data sources to provide an exhaustive overview of intrinsic disorder. MobiDB includes curated annotations from other databases, indirect disorder evidence from structural data, and disorder predictions from protein sequences. It provides an easy-to-use web server to visualize and explore disorder information. This chapter describes the data available in MobiDB, emphasizing how to use and access the intrinsic disorder data. MobiDB is available at URL http://mobidb.bio.unipd.it .