Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 121(25): 257801, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30608839

RESUMEN

Composites of flexible and rigid polymers are ubiquitous in biology and industry alike, yet the physical principles determining their mechanical properties are far from understood. Here, we couple force spectroscopy with large-scale Brownian dynamics simulations to elucidate the unique viscoelastic properties of custom-engineered blends of entangled flexible DNA molecules and semiflexible actin filaments. We show that composites exhibit enhanced stress stiffening and prolonged mechanomemory compared to systems of actin or DNA alone, and that these nonlinear features display a surprising nonmonotonic dependence on the fraction of actin in the composite. Simulations reveal that these counterintuitive results arise from synergistic microscale interactions between the two biopolymers. Namely, DNA entropically drives actin filaments to form bundles that stiffen the network but reduce the entanglement density, while a uniform well-connected actin network is required to reinforce the DNA network against yielding and flow. The competition between bundling and connectivity triggers an unexpected stress response that leads equal mass DNA-actin composites to exhibit the most pronounced stress stiffening and the most long-lived entanglements.


Asunto(s)
Citoesqueleto de Actina/química , ADN/química , Fenómenos Mecánicos , Microscopía de Fuerza Atómica/métodos , Microesferas , Simulación de Dinámica Molecular , Pinzas Ópticas , Reología/métodos , Sustancias Viscoelásticas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA