Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Respir Res ; 24(1): 221, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37700291

RESUMEN

BACKGROUND: Although asthma and chronic obstructive pulmonary disease (COPD) are two distinct chronic airway inflammatory diseases, they often co-exist in a patient and the condition is referred to as asthma-COPD overlap (ACO). Lack of evidence regarding the inflammatory cells in ACO airways has led to their poor prognosis and treatment. The objective of this endobronchial biopsy (EBB) study was to enumerate inflammatory cellular changes in the airway wall of ACO compared with asthma, COPD current smokers (CS) and ex-smokers (ES), normal lung function smokers (NLFS), and non-smoker controls (HC). METHODS: EBB tissues from 74 patients were immunohistochemically stained for macrophages, mast cells, eosinophils, neutrophils, CD8+ T-cells and CD4+ T-cells. The microscopic images of stained tissues were evaluated in the epithelium, reticular basement membrane (RBM) cells/mm RBM length, and lamina propria (LP) cells/mm2 up to a depth of 120 µM using the image analysis software Image-Pro Plus 7.0. The observer was blinded to the images and disease diagnosis. Statistical analysis was performed using GraphPad Prism v9. RESULTS: The tissue macrophages in ACO were substantially higher in the epithelium and RBM than in HC (P < 0.001 for both), COPD-ES (P < 0.001 for both), and -CS (P < 0.05 and < 0.0001, respectively). The ACO LP macrophages were significantly higher in number than COPD-CS (P < 0.05). The mast cell numbers in ACO were lower than in NLFS (P < 0.05) in the epithelium, lower than COPD (P < 0.05) and NLFS (P < 0.001) in RBM; and lower than  HC (P < 0.05) in LP. We noted lower eosinophils in ACO LP than HC (P < 0.05) and the lowest neutrophils in both ACO and asthma. Furthermore, CD8+ T-cell numbers increased in the ACO RBM than HC (P < 0.05), COPD-ES (P < 0.05), and NLFS (P < 0.01); however, they were similar in number in epithelium and LP across groups. CD4+ T-cells remained lower in number across all regions and groups. CONCLUSION: These results suggest that the ACO airway tissue inflammatory cellular profile differed from the contributing diseases of asthma and COPD with a predominance of macrophages.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Broncoscopía , Biopsia , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Asma/diagnóstico , Pulmón
2.
Am J Physiol Lung Cell Mol Physiol ; 323(4): L473-L483, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35997281

RESUMEN

Management of patients with asthma COPD overlap (ACO) is clinically challenging due to insufficient evidence of pathological changes in these patients. In this cross-sectional study, we evaluated airway remodeling in endobronchial biopsies from a total of 90 subjects, which included 12 ACO, 14 patients with asthma, 12 COPD exsmokers (ES), 11 current smokers (CS), 28 healthy controls (HC), and 13 normal lung function smokers (NLFS). Tissue was stained with Masson's trichrome. Epithelium, goblet cells, reticular basement membrane (RBM), cellularity, lamina propria (LP), and smooth muscle (SM) changes were measured using Image-Pro Plus v7 software. Differential airway remodeling pattern was seen in patients with ACO. A limited change was noted in the ACO epithelium compared with other pathological groups. RBM was substantially thicker in patients with ACO than in HC (P < 0.0002) and tended to be thicker than in patients with asthma and NLFS. The total RBM cells were higher in ACO than in the HC (P < 0.0001), COPD-CS (P = 0.0559), -ES (P = 0.0345), and NLFS (P < 0.0002), but did not differ from patients with asthma. Goblet cells were higher in the ACO than in the HC (P = 0.0028) and COPD-ES (P = 0.0081). The total LP cells in ACO appeared to be higher than in HC, COPD-CS, and NLFS but appeared to be lower than in patients with asthma. Finally, SM area was significantly lower in the ACO than in patients with asthma (P = 0.001), COPD-CS (=0.0290), and NLFS (P = 0.0011). This first comprehensive study suggests that patients with ACO had distinguishable tissue remodeling that appeared to be more severe than patients with asthma and COPD. This study will help in informed decision-making for better patient management in clinical practice.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Remodelación de las Vías Aéreas (Respiratorias) , Estudios Transversales , Humanos , Enfermedad Pulmonar Obstructiva Crónica/patología , Fumadores
3.
Am J Physiol Lung Cell Mol Physiol ; 320(1): L158-L163, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33174446

RESUMEN

Lungs of smokers and chronic obstructive pulmonary disease (COPD) are severely compromised and are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) attack. The dangerous combination of enhanced SARS-CoV-2 attachment receptor protein ACE2 along with an increase in endocytic vacuoles will enable viral attachment, entry, and replication. The objective of the study was to identify the presence of SARS-CoV-2 host attachment receptor angiotensin-converting enzyme-2 (ACE2) along with endocytic vacuoles, early endosome antigen-1 (EEA1), late endosome marker RAB7, cathepsin-L, and lysosomal associated membrane protein-1 (LAMP-1) as lysosome markers in the airways of smokers and COPD patients. The study design was cross-sectional and involved lung resections from 39 patients in total, which included 19 patients with Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I or GOLD stage II COPD, of which 9 were current smokers with COPD (COPD-CS) and 10 were ex-smokers with COPD (COPD-ES), 10 were normal lung function smokers, and 10 were never-smoking normal controls. Immunostaining for ACE2, EEA1, RAB7, and cathepsin-L was done. A comparative description for ACE2, EEA1, RAB7, and cathepsin-L expression pattern is provided for the patient groups. Furthermore, staining intensity for LAMP-1 lysosomes was measured as the ratio of the LAMP-1-stained areas per total area of epithelium or subepithelium, using Image ProPlus v7.0 software. LAMP-1 expression showed a positive correlation to patient smoking history while in COPD LAMP-1 negatively correlated to lung function. The active presence of ACE2 protein along with endocytic vacuoles such as early/late endosomes and lysosomes in the small airways of smokers and COPD patients provides evidence that these patient groups could be more susceptible to COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Fumar/patología , Vesículas Transportadoras/metabolismo , Catepsina L/metabolismo , Estudios Transversales , Susceptibilidad a Enfermedades , Humanos , Pulmón/patología , Proteínas de Membrana de los Lisosomas/metabolismo , SARS-CoV-2 , Fumadores , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
4.
Clin Sci (Lond) ; 133(14): 1663-1703, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31346069

RESUMEN

Chronic respiratory diseases are among the leading causes of mortality worldwide, with the major contributor, chronic obstructive pulmonary disease (COPD) accounting for approximately 3 million deaths annually. Frequent acute exacerbations (AEs) of COPD (AECOPD) drive clinical and functional decline in COPD and are associated with accelerated loss of lung function, increased mortality, decreased health-related quality of life and significant economic costs. Infections with a small subgroup of pathogens precipitate the majority of AEs and consequently constitute a significant comorbidity in COPD. However, current pharmacological interventions are ineffective in preventing infectious exacerbations and their treatment is compromised by the rapid development of antibiotic resistance. Thus, alternative preventative therapies need to be considered. Pathogen adherence to the pulmonary epithelium through host receptors is the prerequisite step for invasion and subsequent infection of surrounding structures. Thus, disruption of bacterial-host cell interactions with receptor antagonists or modulation of the ensuing inflammatory profile present attractive avenues for therapeutic development. This review explores key mediators of pathogen-host interactions that may offer new therapeutic targets with the potential to prevent viral/bacterial-mediated AECOPD. There are several conceptual and methodological hurdles hampering the development of new therapies that require further research and resolution.


Asunto(s)
Moléculas de Adhesión Celular/inmunología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Animales , Antibacterianos/administración & dosificación , Antivirales , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/etiología , Moléculas de Adhesión Celular/genética , Humanos , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/genética , Virosis/tratamiento farmacológico , Virosis/etiología
10.
Cochrane Database Syst Rev ; (12): CD010565, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25519778

RESUMEN

BACKGROUND: Primary spontaneous pneumothorax is widely managed according to size with interventional techniques based on practice guidelines. Interventional management is not without complications and observational data suggest conservative management works. The current guidelines are based on expert consensus rather than evidence, and a systematic review may help in identifying evidence for this practice. OBJECTIVES: The objective of the review is to compare conservative and interventional treatments of adult primary spontaneous pneumothorax for outcomes of clinical efficacy, tolerability and safety. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), (The Cochrane Library, Issue 6, 2014); MEDLINE via Ovid SP (1920 to 26th June 2014); EMBASE via Ovid SP (1947 to 26th June 2014); CINAHL via EBSCO host (1980 to 26th June 2014); and ISI Web of Science (1945 to 26th June 2014). We searched ongoing trials via the relevant databases and contacted authors. We also searched the 'grey literature'. SELECTION CRITERIA: We included randomized controlled trials (RCTs) and we accepted quasi-RCTs if a systematic method of allocation was used. Participants were limited to adults aged 18 to 50 years, with their first symptomatic primary spontaneous pneumothorax with radiological evidence and no underlying lung disease. DATA COLLECTION AND ANALYSIS: Two of five authors independently reviewed all studies in the search criteria and made inclusions and exclusions according to the selection criteria. No statistical methods were necessary as there were no included trials. MAIN RESULTS: We identified 358 studies with duplicates removed. There were three potentially relevant studies that we excluded as they were not randomized controlled trials. There was one ongoing trial that was relevant and we contacted the authors and confirmed the study is ongoing at June 2014. We will update this review when this ongoing study is completed. AUTHORS' CONCLUSIONS: There are no completed randomized controlled trials comparing conservative and interventional management for primary spontaneous pneumothorax in adults. There is a lack of high-quality evidence for current guidelines in management and a need for randomized controlled trials comparing conservative and interventional management for this condition.


Asunto(s)
Neumotórax/terapia , Adulto , Humanos
11.
Front Immunol ; 14: 1216506, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435075

RESUMEN

Background: COPD is a common disease characterized by respiratory airflow obstruction. TGF-ß1 and SMAD pathway is believed to play a role in COPD pathogenesis by driving epithelial mesenchymal transition (EMT). Methods: We investigated TGF-ß1 signalling and pSmad2/3 and Smad7 activity in resected small airway tissue from patients with; normal lung function and a smoking history (NLFS), current smokers and ex-smokers with COPD GOLD stage 1 and 2 (COPD-CS and COPD-ES) and compared these with normal non-smoking controls (NC). Using immunohistochemistry, we measured activity for these markers in the epithelium, basal epithelium, and reticular basement membrane (RBM). Tissue was also stained for EMT markers E-cadherin, S100A4 and vimentin. Results: The Staining of pSMAD2/3 was significantly increased in the epithelium, and RBM of all COPD groups compared to NC (p <0.0005). There was a less significant increase in COPD-ES basal cell numbers compared to NC (p= 0.02). SMAD7 staining showed a similar pattern (p <0.0001). All COPD group levels of TGF-ß1 in the epithelium, basal cells, and RBM cells were significantly lower than NC (p <0.0001). Ratio analysis showed a disproportionate increase in SMAD7 levels compared to pSMAD2/3 in NLFS, COPD-CS and COPD-ES. pSMAD negatively correlated with small airway calibre (FEF25-75%; p= 0.03 r= -0.36). EMT markers were active in the small airway epithelium of all the pathological groups compared to patients with COPD. Conclusion: Activation of the SMAD pathway via pSMAD2/3 is triggered by smoking and active in patients with mild to moderate COPD. These changes correlated to decline in lung function. Activation of the SMADs in the small airways is independent of TGF-ß1, suggesting factors other than TGF-ß1 are driving these pathways. These factors may have implications for small airway pathology in smokers and COPD through the process of EMT, however more mechanistic work is needed to prove these correlations.


Asunto(s)
Obstrucción de las Vías Aéreas , Enfermedad Pulmonar Obstructiva Crónica , Proteínas Smad , Factor de Crecimiento Transformador beta1 , Humanos , Transición Epitelial-Mesenquimal , Transducción de Señal , Fumadores
12.
ERJ Open Res ; 9(2)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37077555

RESUMEN

Background: We have previously reported arterial remodelling in patients with idiopathic pulmonary fibrosis (IPF) and suggested that endothelial-to-mesenchymal transition (EndMT) might be central to these changes. This study aims to provide evidence for active EndMT in IPF patients. Methods: Lung resections from 13 patients with IPF and 15 normal controls (NCs) were immunostained for EndMT biomarkers: vascular endothelial cadherin (VE-cadherin), neural cadherin (N-cadherin), S100A4 and vimentin. Pulmonary arteries were analysed for EndMT markers by using computer- and microscope-assisted image analysis software Image ProPlus7.0. All the analysis was done with observer blinded to subject and diagnosis. Results: Increased expression of mesenchymal markers N-cadherin (p<0.0001), vimentin (p<0.0001) and S100A4 (p<0.05) was noted with downregulation of junctional endothelial VE-cadherin (p<0.01) in the intimal layer of the arteries from patients with IPF compared to NCs. Cadherin switch was observed in IPF patients, showing increase in endothelial N-cadherin and decrease in VE-cadherin (p<0.01). There was also VE-cadherin shift from junctions to cytoplasm (p<0.01), effecting endothelial cell integrity in patients with IPF. In IPF, individual mesenchymal markers vimentin and N-cadherin negatively correlated with diffusing capacity of the lungs for carbon monoxide (r'= -0.63, p=0.03 and r'= -0.66, p=0.01). Further, N-cadherin positively correlated with arterial thickness (r'=0.58, p=0.03). Conclusion: This is the first study to demonstrate active EndMT in size-based classified pulmonary arteries from IPF patients and potential role in driving remodelling changes. The mesenchymal markers had a negative impact on the diffusing capacity of the lungs for carbon monoxide. This work also informs early origins of pulmonary hypertension in patients with IPF.

13.
Artículo en Inglés | MEDLINE | ID: mdl-35046647

RESUMEN

Background: Smokers and patients with COPD are highly susceptible to SARS-CoV-2 infection, leading to severe COVID-19. Methods: This cross-sectional study involved resected lung tissues from 16 patients with GOLD stage I or II COPD; of which 8 were current smokers COPD (COPD-CS), and 8 ex-smokers COPD (COPD-ES), 7 normal lung function smokers (NLFS), 9 patients with small airways disease (SAD), and 10 were never-smoking normal controls (NC). Immunostaining for ACE2, Furin, and TMPRSS2 was performed and analysed for percent expression in small airway epithelium (SAE) and counts for positively and negatively stained type 2 pneumocytes and alveolar macrophages (AMs) were done using Image ProPlus V7.0. Furthermore, primary small airway epithelial cells (pSAEC) were analysed by immunofluorescence after exposure to cigarette smoke extract (CSE). Results: ACE2, Furin, and TMPRSS2 expression significantly increased in SAE and type 2 pneumocytes in all the subjects (except Furin for NLFS) compared to NC (p < 0.001). Similar significance was observed for ACE2 positive AM (p < 0.002), except COPD-ES, which decreased in ACE2 positive AMs (p < 0.003). Total type 2 pneumocytes and AMs significantly increased in the pathological groups compared to NC (p < 0.01), except SAD (p = 0.08). However, AMs are significantly reduced in COPD-ES (p < 0.003). Significant changes were observed for tissue co-expression of Furin and TMPRSS2 with ACE2 in SAE, type 2 pneumocytes and AMs. These markers also negatively correlated with lung function parameters, such as FEV1/FVC % predicted, FEF25-75%, DLCO% predicted. A strong co-localisation and expression for ACE2 (p < 0.0001), Furin (p < 0.01), and TMPRSS2 (p < 0.0001) was observed in pSAEC treated with 1% CSE than controls. Discussion: The increased expression of ACE2, TMPRSS2 and Furin, in the SAE, type 2 pneumocytes and AMs of smokers and COPD are detrimental to lung function and proves that these patient groups could be more susceptible to severe COVID-19 infection. Increased type 2 pneumocytes suggest that these patients are vulnerable to developing post-COVID-19 interstitial pulmonary fibrosis or fibrosis in general. There could be a silently developing interstitial pathology in smokers and patients with COPD. This is the first comprehensive study to report such changes.


Asunto(s)
COVID-19 , Enfermedad Pulmonar Obstructiva Crónica , Células Epiteliales Alveolares , Estudios Transversales , Fibrosis , Humanos , Macrófagos Alveolares , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , SARS-CoV-2 , Fumadores , Regulación hacia Arriba
14.
ERJ Open Res ; 8(1)2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35350273

RESUMEN

Background: Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible fibrotic interstitial lung disease. We performed size-based quantitation of pulmonary arterial remodelling in IPF and examined the role of endothelial-to-mesenchymal transition (EndMT) and effects on lung physiology. Methods: Resected lung tissues from 11 normal controls (NCs), and 13 IPF patients were differentially stained using the Movat Pentachrome technique. Size-based classification for pulmonary arteries was conducted in NC and IPF tissues. For each pulmonary artery, arterial size, luminal diameter, thickness of the intima, media and adventitia, and elastin deposition were quantified using Image ProPlus7.0 software. In addition, immunohistochemical staining was performed for EndMT markers and collagen. Results: Large and medium-size arterial numbers were significantly reduced in IPF compared to NCs (p<0.0001). Intima thickness was highest in the arterial range of 200-399 µm and 600-1000 µm (p<0.0001), while medial and adventitial thickness was significant across 200-1000 µm (p<0.05) compared to NC. Medial thickness was found to significantly affect the diffusing capacity of the lungs for carbon monoxide (D LCO) (r=-0.8, p=0.01). Total arterial elastin in IPF was higher across all arterial ranges except 100-199 µm in IPF than in NC, with the greatest differences in 200-399 µm (p<0.001) and 600-1000 µm (p<0.001). Total elastin also negatively correlated with D LCO (r'=-0.63, p=0.04) in IPF. An increase in EndMT markers and collagen type I/ IV was observed. Conclusions: This is the first study demonstrating size-based differences in pulmonary arteries in IPF and its detrimental effect on lung physiology. The process of EndMT might be central to these vascular remodelling changes and could be a potential novel therapeutic target.

15.
ERJ Open Res ; 8(4)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36478915

RESUMEN

Introduction: Pulmonary vascular remodelling in chronic obstructive pulmonary disease (COPD) has detrimental consequences for lung physiology. The aim of our study was to provide a comprehensive size-based morphometric quantification of pulmonary arterial remodelling in smokers and in patients with small airway disease (SAD) or COPD. Method: Movat's pentachrome staining was performed on lung resections for 46 subjects: 12 never-smoker normal controls (NC), six normal lung function smokers (NLFS), nine patients with SAD, nine patients with mild-to-moderate COPD who were current smokers (COPD-CS) and 10 patients with mild-to-moderate COPD who were ex-smokers (COPD-ES). Following a size-based classification of pulmonary arteries, image analysis software was used to measure their number, total wall thickness, individual layer thickness and elastin percentage. Results: All pathological groups showed decreased numbers of pulmonary arteries compared with the NC group in all artery sizes. Arterial wall thickness was greater in NLFS and COPD-CS than in NC. Thickness in COPD-ES was decreased compared with COPD-CS. Intimal thickness was greater in all pathological groups in all arterial sizes than in the NC group. Medial thickness was also greater in small and medium arteries. Intimal thickness of larger arteries in COPD-CS correlated negatively to forced expiratory volume in 1 s/forced vital capacity (FVC) % and forced expiratory flow at 25-75% of FVC. Elastin deposition in small arteries was greatest in COPD-CS. Intimal elastin deposition had a more negative correlation with intimal thickness in NLFS and SAD than in COPD-CS. Conclusion: Smoking, SAD and mild-to-moderate COPD are associated with pruning and a decrease in the number of pulmonary arteries, increased wall thickness and variable elastin deposition. These changes were associated with worse airway obstruction.

16.
Int J Biochem Cell Biol ; 142: 106114, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34748991

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged from Wuhan in China before it spread to the entire globe. It causes coronavirus disease of 2019 (COVID-19) where mostly individuals present mild symptoms, some remain asymptomatic and some show severe lung inflammation and pneumonia in the host through the induction of a marked inflammatory 'cytokine storm'. New and efficacious vaccines have been developed and put into clinical practice in record time, however, there is a still a need for effective treatments for those who are not vaccinated or remain susceptible to emerging SARS-CoV-2 variant strains. Despite this, effective therapeutic interventions against COVID-19 remain elusive. Here, we have reviewed potential drugs for COVID-19 classified on the basis of their mode of action. The mechanisms of action of each are discussed in detail to highlight the therapeutic targets that may help in reducing the global pandemic. The review was done up to July 2021 and the data was assessed through the official websites of WHO and CDC for collecting the information on the clinical trials. Moreover, the recent research papers were also assessed for the relevant data. The search was mainly based on keywords like Coronavirus, SARS-CoV-2, drugs (specific name of the drugs), COVID-19, clinical efficiency, safety profile, side-effects etc.This review outlines potential areas for future research into COVID-19 treatment strategies.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , SARS-CoV-2/efectos de los fármacos , Inmunidad Adaptativa/inmunología , Anticuerpos Antivirales/inmunología , Antimaláricos/farmacología , Antiparasitarios/farmacología , Linfocitos T CD4-Positivos/inmunología , COVID-19/terapia , Humanos , Inmunidad Innata/inmunología , Inmunización Pasiva/métodos , Probióticos/farmacología , SARS-CoV-2/inmunología , Sueroterapia para COVID-19
17.
J Clin Med ; 11(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35160229

RESUMEN

We previously reported higher ACE2 levels in smokers and patients with COPD. The current study investigates if patients with interstitial lung diseases (ILDs) such as IPF and LAM have elevated ACE2, TMPRSS2, and Furin levels, increasing their risk for SARS-CoV-2 infection and development of COVID-19. Surgically resected lung tissue from IPF, LAM patients, and healthy controls (HC) was immunostained for ACE2, TMPRSS2, and Furin. Percentage ACE2, TMPRSS2, and Furin expression was measured in small airway epithelium (SAE) and alveolar areas using computer-assisted Image-Pro Plus 7.0 software. IPF and LAM tissue was also immunostained for myofibroblast marker α-smooth muscle actin (α-SMA) and growth factor transforming growth factor beta1 (TGF-ß1). Compared to HC, ACE2, TMPRSS2 and Furin expression were significantly upregulated in the SAE of IPF (p < 0.01) and LAM (p < 0.001) patients, and in the alveolar areas of IPF (p < 0.001) and LAM (p < 0.01). There was a significant positive correlation between smoking history and ACE2 expression in the IPF cohort for SAE (r = 0.812, p < 0.05) and alveolar areas (r = 0.941, p < 0.01). This, to our knowledge, is the first study to compare ACE2, TMPRSS2, and Furin expression in patients with IPF and LAM compared to HC. Descriptive images show that α-SMA and TGF-ß1 increase in the IPF and LAM tissue. Our data suggests that patients with ILDs are at a higher risk of developing severe COVID-19 infection and post-COVID-19 interstitial pulmonary fibrosis. Growth factors secreted by the myofibroblasts, and surrounding tissue could further affect COVID-19 adhesion proteins/cofactors and post-COVID-19 interstitial pulmonary fibrosis. Smoking seems to be the major driving factor in patients with IPF.

18.
Expert Rev Respir Med ; 15(2): 197-212, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32924671

RESUMEN

INTRODUCTION: COVID-19 is a recent emerging pandemic whose prognosis is still unclear. Diagnostic tools are the main players that not only indicate a possible infection but can further restrict the transmission and can determine the extent to which disease progression would occur. AREAS COVERED: In this paper, we have performed a narrative and critical review on different technology-based diagnostic strategies such as molecular approaches including real-time reverse transcriptase PCR, serological testing through enzyme-linked immunosorbent assay, laboratory and point of care devices, radiology-based detection through computed tomography and chest X-ray, and viral cell cultures on Vero E6 cell lines are discussed in detail to address COVID-19. This review further provides an overview of emergency use authorized immunodiagnostic and molecular diagnostic kits and POC devices by FDA for timely and efficient conduction of diagnostic tests. The majority of the literature cited in this paper is collected from guidelines on protocols and other considerations on diagnostic strategies of COVID-19 issued by WHO, CDC, and FDA under emergency authorization. EXPERT OPINION: Such information holds importance to the health professionals in conducting error-free diagnostic tests and researches in producing better clinical strategies by addressing the limitations associated with the available methods.


Asunto(s)
COVID-19/diagnóstico , Algoritmos , Animales , Anticuerpos Antivirales/sangre , Prueba de COVID-19 , Chlorocebus aethiops , Colorimetría , Efecto Citopatogénico Viral , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Mediciones Luminiscentes , Pulmón/diagnóstico por imagen , Pulmón/patología , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Pruebas en el Punto de Atención , Cuarentena/psicología , Radiografía , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Tomografía Computarizada por Rayos X , Células Vero , Replicación Viral
19.
J Clin Med ; 10(5)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802256

RESUMEN

Tobacco smoking has emerged as a risk factor for increasing the susceptibility to infection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via increased expression of angiotensin-converting enzyme-2 (ACE2) in the lung, linked to coronavirus disease 2019 (COVID-19) development. Given the modifiable nature of electronic cigarettes and the delivery of high concentrations of nicotine, we investigate whether electronic cigarette vaping has the potential to increase susceptibility to SARS-CoV-2 infection. We exposed BEAS-2B cells (bronchial epithelium transformed with Ad12-SV40 2B) and primary small airway epithelial cells (SAECs) to electronic cigarette aerosol condensates produced from propylene glycol/vegetable glycerin or commercially bought e-liquid (±added nicotine) and cigarette smoke extract to investigate if electronic cigarette exposure, like cigarette smoke, increases the expression of ACE2 in lung epithelial cells. In BEAS-2B cells, cytotoxicity (CCK-8), membrane integrity (LDH), and ACE2 protein expression (immunofluorescence) were measured for both 4- and 24 h treatments in BEAS-2B cells and 4 h in SAECs; ACE2 gene expression was measured using quantitative polymerase chain reaction (qPCR) for 4 h treatment in BEAS-2B cells. Nicotine-free condensates and higher concentrations of nicotine-containing condensates were cytotoxic to BEAS-2B cells. Higher LDH release and reduced membrane integrity were seen in BEAS-2B cells treated for 24 h with higher concentrations of nicotine-containing condensates. ACE2 protein expression was observably increased in all treatments compared to cell controls, particularly for 24 h exposures. ACE2 gene expression was significantly increased in cells exposed to the locally bought e-liquid condensate with high nicotine concentration and cigarette smoke extract compared with cell controls. Our study suggests that vaping alone and smoking alone can result in an increase in lung ACE2 expression. Vaping and smoking are avoidable risk factors for COVID-19, which, if avoided, could help reduce the number of COVID-19 cases and the severity of the disease. This is the first study to utilize electronic cigarette aerosol condensates, novel and developed in our laboratory, for investigating ACE2 expression in human airway epithelial cells.

20.
Expert Rev Respir Med ; 14(10): 1027-1043, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32659128

RESUMEN

INTRODUCTION: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible fibrotic disease associated with respiratory failure. The disease remains idiopathic, but repeated alveolar epithelium injury, disruption of alveolar-capillary integrity, abnormal vascular repair, and pulmonary vascular remodeling are considered possible pathogenic mechanisms. Also, the development of comorbidities such as pulmonary hypertension (PH) could further impact disease outcome, quality of life and survival rates in IPF. AREAS COVERED: The current review provides a comprehensive literature survey of the mechanisms involved in the development and manifestations of IPF and their links to PH pathology. This review also provides the current understanding of molecular mechanisms that link the two pathologies and will specifically decipher the role of endothelial to mesenchymal transition (EndMT) along with the possible triggers of EndMT. The possibility of targeting EndMT as a therapeutic option in IPF is discussed. EXPERT OPINION: With a steady increase in prevalence and mortality, IPF is no longer considered a rare disease. Thus, it is of utmost importance and urgency that the underlying profibrotic pathways and mechanisms are fully understood, to enable the development of novel therapeutic strategies.


Asunto(s)
Transición Epitelial-Mesenquimal , Hipertensión Pulmonar/fisiopatología , Fibrosis Pulmonar Idiopática/fisiopatología , Remodelación Vascular , Animales , Humanos , Hipertensión Pulmonar/complicaciones , Fibrosis Pulmonar Idiopática/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA