RESUMEN
Adipose tissue inflammation is a driving factor for the development of obesity-associated metabolic disturbances, and a role of adipose tissue T cells in initiating the pro-inflammatory signaling is emerging. However, data on human adipose tissue T cells in obesity are limited, reflected by the lack of phenotypic markers to define tissue-resident T cell subsets. In this study, we performed a deep characterization of T cells in blood and adipose tissue depots using multicolor flow cytometry and RNA sequencing. We identified distinct subsets of T cells associated with obesity expressing the activation markers, CD26 and CCR5, and obesity-specific genes that are potentially engaged in activating pro-inflammatory pathway, including ceramide signaling, autophagy, and IL-6 signaling. These findings increase our knowledge on the heterogeneity of T cells in adipose tissue and on subsets that may play a role in obesity-related pathogenesis.
Asunto(s)
Tejido Adiposo , Inflamación , Resistencia a la Insulina , Obesidad , Subgrupos de Linfocitos T , Humanos , Tejido Adiposo/inmunología , Tejido Adiposo/patología , Autofagia/inmunología , Ceramidas/inmunología , Inflamación/sangre , Inflamación/genética , Inflamación/inmunología , Resistencia a la Insulina/genética , Resistencia a la Insulina/inmunología , Obesidad/sangre , Obesidad/genética , Obesidad/inmunología , Obesidad/patología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/patologíaRESUMEN
PURPOSE: Tamoxifen is an important targeted endocrine therapy in breast cancer. However, side effects and early discontinuation of tamoxifen remains a barrier for obtaining the improved outcome benefits of long-term tamoxifen treatment. Biomarkers predictive of tamoxifen side effects remain unidentified. The objective of this prospective population-based study was to investigate the value of tamoxifen metabolite concentrations as biomarkers for side effects. A second objective was to assess the validity of discontinuation rates obtained through pharmacy records with the use of tamoxifen drug monitoring. METHODS: Longitudinal serum samples, patient-reported outcome measures and pharmacy records from 220 breast cancer patients were obtained over a 6-year period. Serum concentrations of tamoxifen metabolites were measured by LC-MS/MS. Associations between metabolite concentrations and side effects were analyzed by logistic regression and cross table analyses. To determine the validity of pharmacy records we compared longitudinal tamoxifen concentrations to discontinuation rates obtained through the Norwegian Prescription database (NorPD). Multivariable Cox regression models were performed to identify predictors of discontinuation. RESULTS: At the 2nd year of follow-up, a significant association between vaginal dryness and high concentrations of tamoxifen, Z-4'-OHtam and tam-NoX was identified. NorPD showed a tamoxifen-discontinuation rate of 17.9% at 5 years and drug monitoring demonstrated similar rates. Nausea, vaginal dryness and chemotherapy-naive status were significant risk factors for tamoxifen discontinuation. CONCLUSIONS: This real-world data study suggests that measurements of tamoxifen metabolite concentrations may be predictive of vaginal dryness in breast cancer patients and verifies NorPD as a reliable source of adherence data.
Asunto(s)
Antineoplásicos Hormonales/efectos adversos , Antineoplásicos Hormonales/farmacocinética , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/epidemiología , Monitoreo de Drogas , Tamoxifeno/efectos adversos , Tamoxifeno/farmacocinética , Vagina/efectos de los fármacos , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos Hormonales/uso terapéutico , Biomarcadores , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Cromatografía Liquida , Femenino , Humanos , Cumplimiento de la Medicación , Persona de Mediana Edad , Medición de Resultados Informados por el Paciente , Pronóstico , Encuestas y Cuestionarios , Tamoxifeno/uso terapéutico , Espectrometría de Masas en Tándem , Vagina/fisiopatología , Adulto JovenRESUMEN
Obesity is associated with chronic, low-grade inflammation. Excessive nutrient intake causes adipose tissue expansion, which may in turn cause cellular stress that triggers infiltration of pro-inflammatory immune cells from the circulation as well as activation of cells that are residing in the adipose tissue. In particular, the adipose tissue macrophages (ATMs) are important in the pathogenesis of obesity. A pro-inflammatory activation is also found in other organs which are important for energy metabolism, such as the liver, muscle and the pancreas, which may stimulate the development of obesity-related co-morbidities, including insulin resistance, type 2 diabetes (T2D), cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). Interestingly, it is now clear that obesity-induced pro-inflammatory signaling also occurs in the central nervous system (CNS), and that pro-inflammatory activation of immune cells in the brain may be involved in appetite dysregulation and metabolic disturbances in obesity. More recently, it has become evident that microglia, the resident macrophages of the CNS that drive neuroinflammation, may also be activated in obesity and can be relevant for regulation of hypothalamic feeding circuits. In this review, we focus on the action of peripheral and central macrophages and their potential roles in metabolic disease, and how macrophages interact with other immune cells to promote inflammation during obesity.
Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Obesidad , Macrófagos , Microglía , InflamaciónRESUMEN
Natural killer (NK) cells have emerged as key mediators of obesity-related adipose tissue inflammation. However, the phenotype of NK cell subsets residing in human adipose tissue are poorly defined, preventing a detailed understanding of their role in metabolic disorders. In this study, we applied multicolor flow cytometry to characterize CD56bright and CD56dim NK cells in blood and adipose tissue depots in individuals with obesity and identified surface proteins enriched on adipose tissue-resident CD56bright NK cells. Particularly, we found that adipose tissue harbored clusters of tissue-resident CD56bright NK cells signatured by the expression of CD26, CCR5 and CD63, possibly reflecting an adaptation to the microenvironment. Together, our findings provide broad insights into the identity of NK cells in blood and adipose tissue in relation to obesity.
Asunto(s)
Tejido Adiposo , Células Asesinas Naturales , Humanos , Antígeno CD56/metabolismo , Células Asesinas Naturales/metabolismo , Fenotipo , Tejido Adiposo/metabolismo , Obesidad/metabolismoRESUMEN
A chronic low-grade inflammation, originating in the adipose tissue, is considered a driver of obesity-associated insulin resistance. Macrophage composition in white adipose tissue is believed to contribute to the pathogenesis of metabolic diseases, but a detailed characterization of pro- and anti-inflammatory adipose tissue macrophages (ATMs) in human obesity and how they are distributed in visceral- and subcutaneous adipose depots is lacking. In this study, we performed a surface proteome screening of pro- and anti-inflammatory ATMs in both subcutaneous- (SAT) and visceral adipose tissue (VAT) and evaluated their relationship with systemic insulin resistance. From the proteomics screen we found novel surface proteins specific to M1-like- and M2-like macrophages, and we identified depot-specific immunophenotypes in SAT and VAT. Furthermore, we found that insulin resistance, assessed by HOMA-IR, was positively associated with a relative increase in pro-inflammatory M1-like macrophages in both SAT and VAT.