Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Genet ; 16(11): e1009128, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33151937

RESUMEN

Many studies have focused on the mechanisms of stem cell maintenance via their interaction with a particular niche or microenvironment in adult tissues, but how formation of a functional niche is initiated, including how stem cells within a niche are established, is less well understood. Adult Drosophila melanogaster ovary Germline Stem Cell (GSC) niches are comprised of somatic cells forming a stack called a Terminal Filament (TF) and associated Cap and Escort Cells (CCs and ECs, respectively), which are in direct contact with GSCs. In the adult ovary, the transcription factor Engrailed is specifically expressed in niche cells where it directly controls expression of the decapentaplegic (dpp) gene encoding a member of the Bone Morphogenetic Protein (BMP) family of secreted signaling molecules, which are key factors for GSC maintenance. In larval ovaries, in response to BMP signaling from newly formed niches, adjacent primordial germ cells become GSCs. The bric-à-brac paralogs (bab1 and bab2) encode BTB/POZ domain-containing transcription factors that are expressed in developing niches of larval ovaries. We show here that their functions are necessary specifically within precursor cells for TF formation during these stages. We also identify a new function for Bab1 and Bab2 within developing niches for GSC establishment in the larval ovary and for robust GSC maintenance in the adult. Moreover, we show that the presence of Bab proteins in niche cells is necessary for activation of transgenes reporting dpp expression as of larval stages in otherwise correctly specified Cap Cells, independently of Engrailed and its paralog Invected (En/Inv). Moreover, strong reduction of engrailed/invected expression during larval stages does not impair TF formation and only partially reduces GSC numbers. In the adult ovary, Bab proteins are also required for dpp reporter expression in CCs. Finally, when bab2 was overexpressed at this stage in somatic cells outside of the niche, there were no detectable levels of ectopic En/Inv, but ectopic expression of a dpp transgene was found in these cells and BMP signaling activation was induced in adjacent germ cells, which produced GSC-like tumors. Together, these results indicate that Bab transcription factors are positive regulators of BMP signaling in niche cells for establishment and homeostasis of GSCs in the Drosophila ovary.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Células Germinativas/crecimiento & desarrollo , Ovario/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Recuento de Células , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Larva/crecimiento & desarrollo , Ovario/citología , Transducción de Señal/genética , Nicho de Células Madre/genética , Factores de Transcripción/genética
2.
Curr Biol ; 32(19): 4225-4239.e7, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36070776

RESUMEN

We describe a novel form of selective crosstalk between specific classes of primary olfactory receptor neurons (ORNs) in the Drosophila antennal lobe. Neurotransmitter release from ORNs is driven by two distinct sources of excitation: direct activity derived from the odorant receptor and stimulus-selective lateral signals originating from stereotypic subsets of other ORNs. Consequently, the level of presynaptic neurotransmitter release from an ORN can be significantly dissociated from its firing rate. Stimulus-selective lateral signaling results in the distributed representation of CO2-a behaviorally important environmental cue that directly excites a single ORN class-in multiple olfactory glomeruli, each with distinct response dynamics. CO2-sensitive glomeruli coupled to behavioral attraction respond preferentially to fast changes in CO2 concentration, whereas those coupled to behavioral aversion more closely follow absolute levels of CO2. Behavioral responses to CO2 also depend on the temporal structure of the stimulus: flies walk upwind to fluctuating, but not sustained, pulses of CO2. Stimulus-selective lateral signaling generalizes to additional odors and glomeruli, revealing a subnetwork of lateral interactions between ORNs that reshapes the spatial and temporal structure of odor representations in a stimulus-specific manner.


Asunto(s)
Neuronas Receptoras Olfatorias , Receptores Odorantes , Animales , Dióxido de Carbono , Drosophila/fisiología , Neurotransmisores , Odorantes , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/fisiología , Receptores Odorantes/fisiología , Olfato/fisiología
3.
Mol Biol Cell ; 29(18): 2156-2164, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29995586

RESUMEN

ATP6AP2 (also known as the [pro]renin receptor) is a type I transmembrane protein that can be cleaved into two fragments in the Golgi apparatus. While in Drosophila ATP6AP2 functions in the planar cell polarity (PCP) pathway, recent human genetic studies have suggested that ATP6AP2 could participate in the assembly of the V-ATPase in the endoplasmic reticulum (ER). Using a yeast model, we show here that the V-ATPase assembly factor Voa1 can functionally be replaced by Drosophila ATP6AP2. This rescue is even more efficient when coexpressing its binding partner ATP6AP1, indicating that these two proteins together fulfill Voa1 functions in higher organisms. Structure-function analyses in both yeast and Drosophila show that proteolytic cleavage is dispensable, while C-terminus-dependent ER retrieval is required for ATP6AP2 function. Accordingly, we demonstrate that both overexpression and lack of ATP6AP2 causes ER stress in Drosophila wing cells and that the induction of ER stress is sufficient to cause PCP phenotypes. In summary, our results suggest that full-length ATP6AP2 contributes to the assembly of the V-ATPase proton pore and that impairment of this function affects ER homeostasis and PCP signaling.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Polaridad Celular/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Aparato de Golgi/metabolismo , Humanos , Proteínas de la Membrana/genética , Receptores de Superficie Celular/genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética
4.
J Exp Med ; 214(12): 3707-3729, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29127204

RESUMEN

The biogenesis of the multi-subunit vacuolar-type H+-ATPase (V-ATPase) is initiated in the endoplasmic reticulum with the assembly of the proton pore V0, which is controlled by a group of assembly factors. Here, we identify two hemizygous missense mutations in the extracellular domain of the accessory V-ATPase subunit ATP6AP2 (also known as the [pro]renin receptor) responsible for a glycosylation disorder with liver disease, immunodeficiency, cutis laxa, and psychomotor impairment. We show that ATP6AP2 deficiency in the mouse liver caused hypoglycosylation of serum proteins and autophagy defects. The introduction of one of the missense mutations into Drosophila led to reduced survival and altered lipid metabolism. We further demonstrate that in the liver-like fat body, the autophagic dysregulation was associated with defects in lysosomal acidification and mammalian target of rapamycin (mTOR) signaling. Finally, both ATP6AP2 mutations impaired protein stability and the interaction with ATP6AP1, a member of the V0 assembly complex. Collectively, our data suggest that the missense mutations in ATP6AP2 lead to impaired V-ATPase assembly and subsequent defects in glycosylation and autophagy.


Asunto(s)
Autofagia , Proteínas de Drosophila/genética , Genes Ligados a X , Proteínas de la Membrana/genética , Mutación/genética , ATPasas de Translocación de Protón/genética , Receptores de Superficie Celular/genética , ATPasas de Translocación de Protón Vacuolares/genética , Adolescente , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Sanguíneas/metabolismo , Encéfalo/embriología , Encéfalo/patología , Cutis Laxo/complicaciones , Cutis Laxo/patología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Fibroblastos/patología , Glicosilación , Humanos , Lactante , Lípidos/química , Hígado/patología , Hepatopatías/complicaciones , Hepatopatías/patología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , ATPasas de Translocación de Protón/deficiencia , ATPasas de Translocación de Protón/metabolismo , Trastornos Psicomotores/complicaciones , Trastornos Psicomotores/patología , Receptores de Superficie Celular/química , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/deficiencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA