Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 376(2119)2018 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-29610370

RESUMEN

Empirical evidence suggests that variations in climate affect economic growth across countries over time. However, little is known about the relative impacts of climate change on economic outcomes when global mean surface temperature (GMST) is stabilized at 1.5°C or 2°C warming relative to pre-industrial levels. Here we use a new set of climate simulations under 1.5°C and 2°C warming from the 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) project to assess changes in economic growth using empirical estimates of climate impacts in a global panel dataset. Panel estimation results that are robust to outliers and breaks suggest that within-year variability of monthly temperatures and precipitation has little effect on economic growth beyond global nonlinear temperature effects. While expected temperature changes under a GMST increase of 1.5°C lead to proportionally higher warming in the Northern Hemisphere, the projected impact on economic growth is larger in the Tropics and Southern Hemisphere. Accounting for econometric estimation and climate uncertainty, the projected impacts on economic growth of 1.5°C warming are close to indistinguishable from current climate conditions, while 2°C warming suggests statistically lower economic growth for a large set of countries (median projected annual growth up to 2% lower). Level projections of gross domestic product (GDP) per capita exhibit high uncertainties, with median projected global average GDP per capita approximately 5% lower at the end of the century under 2°C warming relative to 1.5°C. The correlation between climate-induced reductions in per capita GDP growth and national income levels is significant at the p < 0.001 level, with lower-income countries experiencing greater losses, which may increase economic inequality between countries and is relevant to discussions of loss and damage under the United Nations Framework Convention on Climate Change.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

2.
Nat Geosci ; 10: 274-278, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32747861

RESUMEN

Desert dust aerosols affect Earth's global energy balance through interactions with radiation1,2, clouds3,4, and ecosystems5. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate1,4,6. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change4,7-9, and the climate impact of possible future alterations in dust loading is similarly disputed9,10. Here we use an integrative analysis of dust aerosol sizes and abundance to constrain the climatic impact of dust through direct interactions with radiation. Using a combination of observational, experimental, and model data, we find that atmospheric dust is substantially coarser than represented in current climate models. Since coarse dust warms global climate, the dust direct radiative effect (DRE) is likely less cooling than the ~0.4 W/m2 estimated by models in a current ensemble2,11-13. We constrain the dust DRE to - 0.20 (-0.48 to +0.20) W/m2, which suggests that the dust DRE produces only about half the cooling that current models estimate, and raises the possibility that dust DRE is actually net warming the planet.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA