RESUMEN
How cell-to-cell copy number alterations that underpin genomic instability1 in human cancers drive genomic and phenotypic variation, and consequently the evolution of cancer2, remains understudied. Here, by applying scaled single-cell whole-genome sequencing3 to wild-type, TP53-deficient and TP53-deficient;BRCA1-deficient or TP53-deficient;BRCA2-deficient mammary epithelial cells (13,818 genomes), and to primary triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSC) cells (22,057 genomes), we identify three distinct 'foreground' mutational patterns that are defined by cell-to-cell structural variation. Cell- and clone-specific high-level amplifications, parallel haplotype-specific copy number alterations and copy number segment length variation (serrate structural variations) had measurable phenotypic and evolutionary consequences. In TNBC and HGSC, clone-specific high-level amplifications in known oncogenes were highly prevalent in tumours bearing fold-back inversions, relative to tumours with homologous recombination deficiency, and were associated with increased clone-to-clone phenotypic variation. Parallel haplotype-specific alterations were also commonly observed, leading to phylogenetic evolutionary diversity and clone-specific mono-allelic expression. Serrate variants were increased in tumours with fold-back inversions and were highly correlated with increased genomic diversity of cellular populations. Together, our findings show that cell-to-cell structural variation contributes to the origins of phenotypic and evolutionary diversity in TNBC and HGSC, and provide insight into the genomic and mutational states of individual cancer cells.
Asunto(s)
Genómica , Mutación , Neoplasias Ováricas , Análisis de la Célula Individual , Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Filogenia , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
High-grade serous ovarian cancer (HGSOC) is an archetypal cancer of genomic instability1-4 patterned by distinct mutational processes5,6, tumour heterogeneity7-9 and intraperitoneal spread7,8,10. Immunotherapies have had limited efficacy in HGSOC11-13, highlighting an unmet need to assess how mutational processes and the anatomical sites of tumour foci determine the immunological states of the tumour microenvironment. Here we carried out an integrative analysis of whole-genome sequencing, single-cell RNA sequencing, digital histopathology and multiplexed immunofluorescence of 160 tumour sites from 42 treatment-naive patients with HGSOC. Homologous recombination-deficient HRD-Dup (BRCA1 mutant-like) and HRD-Del (BRCA2 mutant-like) tumours harboured inflammatory signalling and ongoing immunoediting, reflected in loss of HLA diversity and tumour infiltration with highly differentiated dysfunctional CD8+ T cells. By contrast, foldback-inversion-bearing tumours exhibited elevated immunosuppressive TGFß signalling and immune exclusion, with predominantly naive/stem-like and memory T cells. Phenotypic state associations were specific to anatomical sites, highlighting compositional, topological and functional differences between adnexal tumours and distal peritoneal foci. Our findings implicate anatomical sites and mutational processes as determinants of evolutionary phenotypic divergence and immune resistance mechanisms in HGSOC. Our study provides a multi-omic cellular phenotype data substrate from which to develop and interpret future personalized immunotherapeutic approaches and early detection research.
Asunto(s)
Evasión Inmune , Mutación , Neoplasias Ováricas , Femenino , Humanos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/inmunología , Cistadenocarcinoma Seroso/patología , Recombinación Homóloga , Evasión Inmune/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Microambiente Tumoral , Factor de Crecimiento Transformador beta , Genes BRCA1 , Genes BRCA2RESUMEN
Drug resistance is the major cause of therapeutic failure in high-grade serous ovarian cancer (HGSOC). Yet, the mechanisms by which tumors evolve to drug resistant states remains largely unknown. To address this, we aimed to exploit clone-specific genomic structural variations by combining scaled single-cell whole genome sequencing with longitudinally collected cell-free DNA (cfDNA), enabling clonal tracking before, during and after treatment. We developed a cfDNA hybrid capture, deep sequencing approach based on leveraging clone-specific structural variants as endogenous barcodes, with orders of magnitude lower error rates than single nucleotide variants in ctDNA (circulating tumor DNA) detection, demonstrated on 19 patients at baseline. We then applied this to monitor and model clonal evolution over several years in ten HGSOC patients treated with systemic therapy from diagnosis through recurrence. We found drug resistance to be polyclonal in most cases, but frequently dominated by a single high-fitness and expanding clone, reducing clonal diversity in the relapsed disease state in most patients. Drug-resistant clones frequently displayed notable genomic features, including high-level amplifications of oncogenes such as CCNE1, RAB25, NOTCH3, and ERBB2. Using a population genetics Wright-Fisher model, we found evolutionary trajectories of these features were consistent with drug-induced positive selection. In select cases, these alterations impacted selection of secondary lines of therapy with positive patient outcomes. For cases with matched single-cell RNA sequencing data, pre-existing and genomically encoded phenotypic states such as upregulation of EMT and VEGF were linked to drug resistance. Together, our findings indicate that drug resistant states in HGSOC pre-exist at diagnosis and lead to dramatic clonal expansions that alter clonal composition at the time of relapse. We suggest that combining tumor single cell sequencing with cfDNA enables clonal tracking in patients and harbors potential for evolution-informed adaptive treatment decisions.
RESUMEN
Whole-genome doubling (WGD) is a critical driver of tumor development and is linked to drug resistance and metastasis in solid malignancies. Here, we demonstrate that WGD is an ongoing mutational process in tumor evolution. Using single-cell whole-genome sequencing, we measured and modeled how WGD events are distributed across cellular populations within tumors and associated WGD dynamics with properties of genome diversification and phenotypic consequences of innate immunity. We studied WGD evolution in 65 high-grade serous ovarian cancer (HGSOC) tissue samples from 40 patients, yielding 29,481 tumor cell genomes. We found near-ubiquitous evidence of WGD as an ongoing mutational process promoting cell-cell diversity, high rates of chromosomal missegregation, and consequent micronucleation. Using a novel mutation-based WGD timing method, doubleTime , we delineated specific modes by which WGD can drive tumor evolution: (i) unitary evolutionary origin followed by significant diversification, (ii) independent WGD events on a pre-existing background of copy number diversity, and (iii) evolutionarily late clonal expansions of WGD populations. Additionally, through integrated single-cell RNA sequencing and high-resolution immunofluorescence microscopy, we found that inflammatory signaling and cGAS-STING pathway activation result from ongoing chromosomal instability and are restricted to tumors that remain predominantly diploid. This contrasted with predominantly WGD tumors, which exhibited significant quiescent and immunosuppressive phenotypic states. Together, these findings establish WGD as an evolutionarily 'active' mutational process that promotes evolvability and dysregulated immunity in late stage ovarian cancer.