Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 626(7997): 119-127, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38200310

RESUMEN

The evolution of reproductive barriers is the first step in the formation of new species and can help us understand the diversification of life on Earth. These reproductive barriers often take the form of hybrid incompatibilities, in which alleles derived from two different species no longer interact properly in hybrids1-3. Theory predicts that hybrid incompatibilities may be more likely to arise at rapidly evolving genes4-6 and that incompatibilities involving multiple genes should be common7,8, but there has been sparse empirical data to evaluate these predictions. Here we describe a mitonuclear incompatibility involving three genes whose protein products are in physical contact within respiratory complex I of naturally hybridizing swordtail fish species. Individuals homozygous for mismatched protein combinations do not complete embryonic development or die as juveniles, whereas those heterozygous for the incompatibility have reduced complex I function and unbalanced representation of parental alleles in the mitochondrial proteome. We find that the effects of different genetic interactions on survival are non-additive, highlighting subtle complexity in the genetic architecture of hybrid incompatibilities. Finally, we document the evolutionary history of the genes involved, showing signals of accelerated evolution and evidence that an incompatibility has been transferred between species via hybridization.


Asunto(s)
Núcleo Celular , Complejo I de Transporte de Electrón , Peces , Genes Letales , Especiación Genética , Hibridación Genética , Proteínas Mitocondriales , Animales , Alelos , Complejo I de Transporte de Electrón/genética , Peces/clasificación , Peces/embriología , Peces/genética , Peces/crecimiento & desarrollo , Homocigoto , Genes Letales/genética , Especificidad de la Especie , Desarrollo Embrionario/genética , Proteínas Mitocondriales/genética , Núcleo Celular/genética , Heterocigoto , Evolución Molecular
2.
Proc Natl Acad Sci U S A ; 121(10): e2317240121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38427600

RESUMEN

Nuclear and organellar genomes can evolve at vastly different rates despite occupying the same cell. In most bilaterian animals, mitochondrial DNA (mtDNA) evolves faster than nuclear DNA, whereas this trend is generally reversed in plants. However, in some exceptional angiosperm clades, mtDNA substitution rates have increased up to 5,000-fold compared with closely related lineages. The mechanisms responsible for this acceleration are generally unknown. Because plants rely on homologous recombination to repair mtDNA damage, we hypothesized that mtDNA copy numbers may predict evolutionary rates, as lower copy numbers may provide fewer templates for such repair mechanisms. In support of this hypothesis, we found that copy number explains 47% of the variation in synonymous substitution rates of mtDNA across 60 diverse seed plant species representing ~300 million years of evolution. Copy number was also negatively correlated with mitogenome size, which may be a cause or consequence of mutation rate variation. Both relationships were unique to mtDNA and not observed in plastid DNA. These results suggest that homologous recombinational repair plays a role in driving mtDNA substitution rates in plants and may explain variation in mtDNA evolution more broadly across eukaryotes. Our findings also contribute to broader questions about the relationships between mutation rates, genome size, selection efficiency, and the drift-barrier hypothesis.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma , Animales , ADN de Plantas/genética , Variaciones en el Número de Copia de ADN/genética , Filogenia , ADN Mitocondrial/genética , Plantas/genética
3.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37935058

RESUMEN

Genetic elements encoded in nuclear DNA determine the sex of an individual in many animals. In certain bivalve lineages that possess doubly uniparental inheritance (DUI), mitochondrial DNA (mtDNA) has been hypothesized to contribute to sex determination. In these cases, females transmit a female mtDNA to all offspring, while male mtDNA (M mtDNA) is transmitted only from fathers to sons. Because M mtDNA is inherited in the same way as Y chromosomes, it has been hypothesized that mtDNA may be responsible for sex determination. However, the role of mitochondrial and nuclear genes in sex determination has yet to be validated in DUI bivalves. In this study, we used DNA, RNA, and mitochondrial short noncoding RNA (sncRNA) sequencing to explore the role of mitochondrial and nuclear elements in the sexual development pathway of the freshwater mussel Potamilus streckersoni (Bivalvia: Unionida). We found that the M mtDNA sheds a sncRNA partially within a male-specific mitochondrial gene that targets a pathway hypothesized to be involved in female development and mitophagy. RNA-seq confirmed the gene target was significantly upregulated in females, supporting a direct role of mitochondrial sncRNAs in gene silencing. These findings support the hypothesis that M mtDNA inhibits female development. Genome-wide patterns of genetic differentiation and heterozygosity did not support a nuclear sex-determining region, although we cannot reject that nuclear factors are involved with sex determination. Our results provide further evidence that mitochondrial loci contribute to diverse, nonrespiratory functions and additional insights into an unorthodox sex-determining system.


Asunto(s)
Bivalvos , ARN Pequeño no Traducido , Femenino , Animales , Bivalvos/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Genes Mitocondriales
4.
Nat Rev Genet ; 19(10): 635-648, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30018367

RESUMEN

The partitioning of genetic material between the nucleus and cytoplasmic (mitochondrial and plastid) genomes within eukaryotic cells necessitates coordinated integration between these genomic compartments, with important evolutionary and biomedical implications. Classic questions persist about the pervasive reduction of cytoplasmic genomes via a combination of gene loss, transfer and functional replacement - and yet why they are almost always retained in some minimal form. One striking consequence of cytonuclear integration is the existence of 'chimeric' enzyme complexes composed of subunits encoded in two different genomes. Advances in structural biology and comparative genomics are yielding important insights into the evolution of such complexes, including correlated sequence changes and recruitment of novel subunits. Thus, chimeric cytonuclear complexes provide a powerful window into the mechanisms of molecular co-evolution.


Asunto(s)
Núcleo Celular/genética , Citoplasma/genética , Evolución Molecular , Genoma Mitocondrial , Genoma de Plastidios
5.
Bioessays ; 44(4): e2100283, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35170770

RESUMEN

Animal and plant species exhibit an astonishing diversity of sexual systems, including environmental and genetic determinants of sex, with the latter including genetic material in the mitochondrial genome. In several hermaphroditic plants for example, sex is determined by an interaction between mitochondrial cytoplasmic male sterility (CMS) genes and nuclear restorer genes. Specifically, CMS involves aberrant mitochondrial genes that prevent pollen development and specific nuclear genes that restore it, leading to a mixture of female (male-sterile) and hermaphroditic individuals in the population (gynodioecy). Such a mitochondrial-nuclear sex determination system is thought to be rare outside plants. Here, we present one possible case of CMS in animals. We hypothesize that the only exception to the strict maternal mtDNA inheritance in animals, the doubly uniparental inheritance (DUI) system in bivalves, might have originated as a mitochondrial-nuclear sex-determination system. We document and explore similarities that exist between DUI and CMS, and we propose various ways to test our hypothesis.


Asunto(s)
ADN Mitocondrial , Genoma Mitocondrial , Animales , ADN Mitocondrial/genética , Femenino , Genes Mitocondriales/genética , Genoma Mitocondrial/genética , Patrón de Herencia/genética , Infertilidad Vegetal
6.
Mol Biol Evol ; 39(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36288802

RESUMEN

Mitochondrial (mt) and nuclear-encoded proteins are integrated in aerobic respiration, requiring co-functionality among gene products from fundamentally different genomes. Different evolutionary rates, inheritance mechanisms, and selection pressures set the stage for incompatibilities between interacting products of the two genomes. The mitonuclear coevolution hypothesis posits that incompatibilities may be avoided if evolution in one genome selects for complementary changes in interacting genes encoded by the other genome. Nuclear compensation, in which deleterious mtDNA changes are offset by compensatory nuclear changes, is often invoked as the primary mechanism for mitonuclear coevolution. Yet, direct evidence supporting nuclear compensation is rare. Here, we used data from 58 mammalian species representing eight orders to show strong correlations between evolutionary rates of mt and nuclear-encoded mt-targeted (N-mt) proteins, but not between mt and non-mt-targeted nuclear proteins, providing strong support for mitonuclear coevolution across mammals. N-mt genes with direct mt interactions also showed the strongest correlations. Although most N-mt genes had elevated dN/dS ratios compared to mt genes (as predicted under nuclear compensation), N-mt sites in close contact with mt proteins were not overrepresented for signs of positive selection compared to noncontact N-mt sites (contrary to predictions of nuclear compensation). Furthermore, temporal patterns of N-mt and mt amino acid substitutions did not support predictions of nuclear compensation, even in positively selected, functionally important residues with direct mitonuclear contacts. Overall, our results strongly support mitonuclear coevolution across ∼170 million years of mammalian evolution but fail to support nuclear compensation as the major mode of mitonuclear coevolution.


Asunto(s)
ADN Mitocondrial , Genes Mitocondriales , Animales , ADN Mitocondrial/genética , Mamíferos/genética , Núcleo Celular/genética , Proteínas Mitocondriales/genética , Genómica
7.
Am Nat ; 202(4): E121-E129, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792916

RESUMEN

AbstractDisentangling different types of selection is a common goal in molecular evolution. Elevated dN/dS ratios (the ratio of nonsynonymous to synonymous substitution rates) in focal lineages are often interpreted as signs of positive selection. Paradoxically, relaxed purifying selection can also result in elevated dN/dS ratios, but tests to distinguish these two causes are seldomly implemented. Here, we reevaluated seven case studies describing elevated dN/dS ratios in animal mitochondrial DNA (mtDNA) and their accompanying hypotheses regarding selection. They included flightless lineages versus flighted lineages in birds, bats, and insects and physiological adaptations in snakes, two groups of electric fishes, and primates. We found that elevated dN/dS ratios were often not caused by the predicted mechanism, and we sometimes found strong support for the opposite mechanism. We discuss reasons why energetic hypotheses may be confounded by other selective forces acting on mtDNA and caution against overinterpreting singular molecular signals, including elevated dN/dS ratios.


Asunto(s)
Genoma Mitocondrial , Animales , Filogenia , Selección Genética , Evolución Molecular , Primates/genética , ADN Mitocondrial/genética
8.
J Hered ; 114(5): 513-520, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36869788

RESUMEN

Genomic resources across squamate reptiles (lizards and snakes) have lagged behind other vertebrate systems and high-quality reference genomes remain scarce. Of the 23 chromosome-scale reference genomes across the order, only 12 of the ~60 squamate families are represented. Within geckos (infraorder Gekkota), a species-rich clade of lizards, chromosome-level genomes are exceptionally sparse representing only two of the seven extant families. Using the latest advances in genome sequencing and assembly methods, we generated one of the highest-quality squamate genomes to date for the leopard gecko, Eublepharis macularius (Eublepharidae). We compared this assembly to the previous, short-read only, E. macularius reference genome published in 2016 and examined potential factors within the assembly influencing contiguity of genome assemblies using PacBio HiFi data. Briefly, the read N50 of the PacBio HiFi reads generated for this study was equal to the contig N50 of the previous E. macularius reference genome at 20.4 kilobases. The HiFi reads were assembled into a total of 132 contigs, which was further scaffolded using HiC data into 75 total sequences representing all 19 chromosomes. We identified 9 of the 19 chromosomal scaffolds were assembled as a near-single contig, whereas the other 10 chromosomes were each scaffolded together from multiple contigs. We qualitatively identified that the percent repeat content within a chromosome broadly affects its assembly contiguity prior to scaffolding. This genome assembly signifies a new age for squamate genomics where high-quality reference genomes rivaling some of the best vertebrate genome assemblies can be generated for a fraction of previous cost estimates. This new E. macularius reference assembly is available on NCBI at JAOPLA010000000.


Asunto(s)
Genoma , Lagartos , Humanos , Animales , Genómica/métodos , Mapeo Cromosómico/métodos , Cromosomas , Lagartos/genética
9.
J Hered ; 114(3): 199-206, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-36897956

RESUMEN

In most animals, mitochondrial DNA is strictly maternally inherited and non-recombining. One exception to this pattern is called doubly uniparental inheritance (DUI), a phenomenon involving the independent transmission of female and male mitochondrial genomes. DUI is known only from the molluskan class Bivalvia. The phylogenetic distribution of male-transmitted mitochondrial DNA (M mtDNA) in bivalves is consistent with several evolutionary scenarios, including multiple independent gains, losses, and varying degrees of recombination with female-transmitted mitochondrial DNA (F mtDNA). In this study, we use phylogenetic methods to test M mtDNA origination hypotheses and infer the prevalence of mitochondrial recombination in bivalves with DUI. Phylogenetic modeling using site concordance factors supported a single origin of M mtDNA in bivalves coupled with recombination acting over long evolutionary timescales. Ongoing mitochondrial recombination is present in Mytilida and Venerida, which results in a pattern of concerted evolution of F mtDNA and M mtDNA. Mitochondrial recombination could be favored to offset the deleterious effects of asexual inheritance and maintain mitonuclear compatibility across tissues. Cardiida and Unionida have gone without recent recombination, possibly due to an extension of the COX2 gene in male mitochondrial DNA. The loss of recombination could be connected to the role of M mtDNA in sex determination or sexual development. Our results support that recombination events may occur throughout the mitochondrial genomes of DUI species. Future investigations may reveal more complex patterns of inheritance of recombinants, which could explain the retention of signal for a single origination of M mtDNA in protein-coding genes.


Asunto(s)
Bivalvos , Genoma Mitocondrial , Animales , Femenino , Masculino , Filogenia , Mitocondrias/genética , Bivalvos/genética , ADN Mitocondrial/genética , Patrón de Herencia , Recombinación Genética
10.
Mol Biol Evol ; 38(6): 2597-2614, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33616640

RESUMEN

In Metazoa, four out of five complexes involved in oxidative phosphorylation (OXPHOS) are formed by subunits encoded by both the mitochondrial (mtDNA) and nuclear (nuDNA) genomes, leading to the expectation of mitonuclear coevolution. Previous studies have supported coadaptation of mitochondria-encoded (mtOXPHOS) and nuclear-encoded OXPHOS (nuOXPHOS) subunits, often specifically interpreted with regard to the "nuclear compensation hypothesis," a specific form of mitonuclear coevolution where nuclear genes compensate for deleterious mitochondrial mutations due to less efficient mitochondrial selection. In this study, we analyzed patterns of sequence evolution of 79 OXPHOS subunits in 31 bivalve species, a taxon showing extraordinary mtDNA variability and including species with "doubly uniparental" mtDNA inheritance. Our data showed strong and clear signals of mitonuclear coevolution. NuOXPHOS subunits had concordant topologies with mtOXPHOS subunits, contrary to previous phylogenies based on nuclear genes lacking mt interactions. Evolutionary rates between mt and nuOXPHOS subunits were also highly correlated compared with non-OXPHO-interacting nuclear genes. Nuclear subunits of chimeric OXPHOS complexes (I, III, IV, and V) also had higher dN/dS ratios than Complex II, which is formed exclusively by nuDNA-encoded subunits. However, we did not find evidence of nuclear compensation: mitochondria-encoded subunits showed similar dN/dS ratios compared with nuclear-encoded subunits, contrary to most previously studied bilaterian animals. Moreover, no site-specific signals of compensatory positive selection were detected in nuOXPHOS genes. Our analyses extend the evidence for mitonuclear coevolution to a new taxonomic group, but we propose a reconsideration of the nuclear compensation hypothesis.


Asunto(s)
Evolución Biológica , Bivalvos/genética , Genoma Mitocondrial , Fosforilación Oxidativa , Animales
11.
Glob Chang Biol ; 27(2): 297-311, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33064866

RESUMEN

A fundamental gap in climate change vulnerability research is an understanding of the relative thermal sensitivity of ectotherms. Aquatic insects are vital to stream ecosystem function and biodiversity but insufficiently studied with respect to their thermal physiology. With global temperatures rising at an unprecedented rate, it is imperative that we know how aquatic insects respond to increasing temperature and whether these responses vary among taxa, latitudes, and elevations. We evaluated the thermal sensitivity of standard metabolic rate in stream-dwelling baetid mayflies and perlid stoneflies across a ~2,000 m elevation gradient in the temperate Rocky Mountains in Colorado, USA, and the tropical Andes in Napo, Ecuador. We used temperature-controlled water baths and microrespirometry to estimate changes in oxygen consumption. Tropical mayflies generally exhibited greater thermal sensitivity in metabolism compared to temperate mayflies; tropical mayfly metabolic rates increased more rapidly with temperature and the insects more frequently exhibited behavioral signs of thermal stress. By contrast, temperate and tropical stoneflies did not clearly differ. Varied responses to temperature among baetid mayflies and perlid stoneflies may reflect differences in evolutionary history or ecological roles as herbivores and predators, respectively. Our results show that there is physiological variation across elevations and species and that low-elevation tropical mayflies may be especially imperiled by climate warming. Given such variation among species, broad generalizations about the vulnerability of tropical ectotherms should be made more cautiously.


Asunto(s)
Ephemeroptera , Animales , Colorado , Ecosistema , Ecuador , Insectos , Temperatura , Clima Tropical
12.
J Evol Biol ; 34(11): 1722-1736, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34533872

RESUMEN

Mitonuclear coevolution is an important prerequisite for efficient energy production in eukaryotes. However, many bivalve taxa experience doubly uniparental inheritance (DUI) and have sex-specific mitochondrial (mt) genomes, providing a challenge for mitonuclear coevolution. We examined possible mechanisms to reconcile mitonuclear coevolution with DUI. No nuclear-encoded, sex-specific OXPHOS paralogs were found in the DUI clam Ruditapes philippinarum, refuting OXPHOS paralogy as a solution in this species. It is also unlikely that mt changes causing disruption of nuclear interactions are strongly selected against because sex-specific mt-residues or those under positive selection in M mt genes were not depleted for contacting nuclear-encoded residues. However, M genomes showed consistently higher dN /dS ratios compared to putatively ancestral F genomes in all mt OXPHOS genes and across all DUI species. Further analyses indicated that this was consistently due to relaxed, not positive selection on M vs. F mt OXPHOS genes. Similarly, selection was relaxed on the F genome of DUI species compared to species with strict maternal inheritance. Coupled with recent physiological and molecular evolution studies, we suggest that relaxed selection on M mt function limits the need to maintain mitonuclear interactions in M genomes compared to F genomes. We discuss our findings with regard to OXPHOS function and the origin of DUI.


Asunto(s)
Bivalvos , Genoma Mitocondrial , Animales , Bivalvos/genética , ADN Mitocondrial , Femenino , Genes Mitocondriales , Patrón de Herencia , Masculino
13.
Biol Lett ; 16(9): 20200450, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32933406

RESUMEN

Mitochondrial (mt) respiration depends on proteins encoded both by the mitochondrial and nuclear genomes. Variation in mt-DNA mutation rates exists across eukaryotes, although the functional consequences of elevated mt mutation rates in some lineages remain underexplored. In the angiosperm genus Silene, closely related, ecologically similar species have either 'fast' or 'slow' mt-DNA mutation rates. Here, we investigated the functional consequences of elevated mt-DNA mutation rates on mt respiration profiles of Silene mitochondria. Overall levels of respiration were similar among Species. Fast species had lower respiration efficiency than slow species and relied up to 48% more on nuclear-encoded respiratory enzymes alternative oxidase (AOX) and accessory dehydrogenases (DHex), which participate in stress responses in plants. However, not all fast species showed these trends. Respiratory profiles of some enzymes were correlated, most notably AOX and DHex. We conclude that subtle differences in mt physiology among Silene lineages with dramatically different mt mutation rates may underly similar phenotypes at higher levels of biological organization, betraying the consequences of mt mutations.


Asunto(s)
Silene , ADN Mitocondrial , Evolución Molecular , Genoma de Planta , Mitocondrias/genética , Proteínas Mitocondriales/genética , Mutación , Tasa de Mutación , Silene/genética
14.
J Exp Biol ; 222(Pt 24)2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31727759

RESUMEN

Environmentally induced plasticity in gene expression is one of the underlying mechanisms of adaptation to habitats with variable environments. For example, euryhaline crustaceans show predictable changes in the expression of ion-transporter genes during salinity transfers, although studies have typically been limited to specific genes, taxa and ecosystems of interest. Here, we investigated responses to salinity change at multiple organizational levels in five species of shrimp representing at least three independent invasions of the anchialine ecosystem, defined as habitats with marine and freshwater influences with spatial and temporal fluctuations in salinity. Although all five species were generally strong osmoregulators, salinity-induced changes in gill physiology and gene expression were highly species specific. While some species exhibited patterns similar to those of previously studied euryhaline crustaceans, instances of distinct and atypical patterns were recovered from closely related species. Species-specific patterns were found when examining: (1) numbers and identities of differentially expressed genes, (2) salinity-induced expression of genes predicted a priori to play a role in osmoregulation, and (3) salinity-induced expression of orthologs shared among all species. Notably, ion transport genes were unchanged in the atyid Halocaridina rubra while genes normally associated with vision and light perception were among those most highly upregulated. Potential reasons for species-specific patterns are discussed, including variation among anchialine habitats in salinity regimes and divergent evolution in anchialine taxa. Underexplored mechanisms of osmoregulation in crustaceans revealed here by the application of transcriptomic approaches to ecologically and taxonomically understudied systems are also explored.


Asunto(s)
Adaptación Biológica , Decápodos/fisiología , Expresión Génica , Salinidad , Agua de Mar , Animales , Decápodos/genética , Ecosistema , Transporte Iónico , Osmorregulación , Especificidad de la Especie
15.
Mol Biol Evol ; 33(12): 3042-3053, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27563053

RESUMEN

Eukaryotes rely on proteins encoded by the nuclear and mitochondrial (mt) genomes, which interact within multisubunit complexes such as oxidative-phosphorylation enzymes. Although selection is thought to be less efficient on the asexual mt genome, in bilaterian animals the ratio of nonsynonymous to synonymous substitutions (ω) is lower in mt- compared with nuclear-encoded OXPHOS subunits, suggesting stronger effects of purifying selection in the mt genome. Because high levels of gene expression constrain protein sequence evolution, one proposed resolution to this paradox is that mt genes are expressed more highly than nuclear genes. To test this hypothesis, we investigated expression and sequence evolution of mt and nuclear genes from 84 diverse eukaryotes that vary in mt gene content and mutation rate. We found that the relationship between mt and nuclear ω values varied dramatically across eukaryotes. In contrast, transcript abundance is consistently higher for mt genes than nuclear genes, regardless of which genes happen to be in the mt genome. Consequently, expression levels cannot be responsible for the differences in ω Rather, 84% of the variance in the ratio of ω values between mt and nuclear genes could be explained by differences in mutation rate between the two genomes. We relate these findings to the hypothesis that high rates of mt mutation select for compensatory changes in the nuclear genome. We also propose an explanation for why mt transcripts consistently outnumber their nuclear counterparts, with implications for mitonuclear protein imbalance and aging.


Asunto(s)
Núcleo Celular/genética , Eucariontes/genética , Mitocondrias/genética , Tasa de Mutación , Animales , Evolución Biológica , Núcleo Celular/metabolismo , ADN Mitocondrial/genética , Regulación de la Expresión Génica , Genes Mitocondriales , Genoma Mitocondrial , Mitocondrias/metabolismo , Fosforilación Oxidativa , Filogenia
16.
Mol Ecol ; 26(8): 2212-2236, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27997046

RESUMEN

The study of reproductive isolation and species barriers frequently focuses on mitochondrial genomes and has produced two alternative and almost diametrically opposed narratives. On one hand, mtDNA may be at the forefront of speciation events, with co-evolved mitonuclear interactions responsible for some of the earliest genetic incompatibilities arising among isolated populations. On the other hand, there are numerous cases of introgression of mtDNA across species boundaries even when nuclear gene flow is restricted. We argue that these seemingly contradictory patterns can result from a single underlying cause. Specifically, the accumulation of deleterious mutations in mtDNA creates a problem with two alternative evolutionary solutions. In some cases, compensatory or epistatic changes in the nuclear genome may ameliorate the effects of mitochondrial mutations, thereby establishing coadapted mitonuclear genotypes within populations and forming the basis of reproductive incompatibilities between populations. Alternatively, populations with high mitochondrial mutation loads may be rescued by replacement with a more fit, foreign mitochondrial haplotype. Coupled with many nonadaptive mechanisms of introgression that can preferentially affect cytoplasmic genomes, this form of adaptive introgression may contribute to the widespread discordance between mitochondrial and nuclear genealogies. Here, we review recent advances related to mitochondrial introgression and mitonuclear incompatibilities, including the potential for cointrogression of mtDNA and interacting nuclear genes. We also address an emerging controversy over the classic assumption that selection on mitochondrial genomes is inefficient and discuss the mechanisms that lead lineages down alternative evolutionary paths in response to mitochondrial mutation accumulation.


Asunto(s)
Especiación Genética , Genoma Mitocondrial , Adaptación Biológica/genética , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Haplotipos , Desequilibrio de Ligamiento , Modelos Genéticos , Mutación , Plantas/genética , Aislamiento Reproductivo , Selección Genética
17.
Bioessays ; 37(9): 951-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26201475

RESUMEN

The evolution of sex in eukaryotes represents a paradox, given the "twofold" fitness cost it incurs. We hypothesize that the mutational dynamics of the mitochondrial genome would have favored the evolution of sexual reproduction. Mitochondrial DNA (mtDNA) exhibits a high-mutation rate across most eukaryote taxa, and several lines of evidence suggest that this high rate is an ancestral character. This seems inexplicable given that mtDNA-encoded genes underlie the expression of life's most salient functions, including energy conversion. We propose that negative metabolic effects linked to mitochondrial mutation accumulation would have invoked selection for sexual recombination between divergent host nuclear genomes in early eukaryote lineages. This would provide a mechanism by which recombinant host genotypes could be rapidly shuffled and screened for the presence of compensatory modifiers that offset mtDNA-induced harm. Under this hypothesis, recombination provides the genetic variation necessary for compensatory nuclear coadaptation to keep pace with mitochondrial mutation accumulation.


Asunto(s)
Evolución Biológica , Eucariontes/genética , Mitocondrias/genética , Modelos Biológicos , Mutación/genética , Recombinación Genética , Caracteres Sexuales , Adaptación Fisiológica/genética , Animales , Núcleo Celular/genética , Humanos
18.
J Mol Evol ; 80(3-4): 193-208, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25758350

RESUMEN

Cyclooxygenase (COX) enzymatically converts arachidonic acid into prostaglandin G/H in animals and has importance during pregnancy, digestion, and other physiological functions in mammals. COX genes have mainly been described from vertebrates, where gene duplications are common, but few studies have examined COX in invertebrates. Given the increasing ease in generating genomic data, as well as recent, although incomplete descriptions of potential COX sequences in Mollusca, Crustacea, and Insecta, assessing COX evolution across Metazoa is now possible. Here, we recover 40 putative COX orthologs by searching publicly available genomic resources as well as ~250 novel invertebrate transcriptomic datasets. Results suggest the common ancestor of Cnidaria and Bilateria possessed a COX homolog similar to those of vertebrates, although such homologs were not found in poriferan and ctenophore genomes. COX was found in most crustaceans and the majority of molluscs examined, but only specific taxa/lineages within Cnidaria and Annelida. For example, all octocorallians appear to have COX, while no COX homologs were found in hexacorallian datasets. Most species examined had a single homolog, although species-specific COX duplications were found in members of Annelida, Mollusca, and Cnidaria. Additionally, COX genes were not found in Hemichordata, Echinodermata, or Platyhelminthes, and the few previously described COX genes in Insecta lacked appreciable sequence homology (although structural analyses suggest these may still be functional COX enzymes). This analysis provides a benchmark for identifying COX homologs in future genomic and transcriptomic datasets, and identifies lineages for future studies of COX.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Prostaglandina-Endoperóxido Sintasas/genética , Animales , Cordados/genética , Crustáceos/genética , Bases de Datos Genéticas , Equinodermos/genética , Insectos/genética , Datos de Secuencia Molecular , Moluscos/genética , Filogenia , Prostaglandina-Endoperóxido Sintasas/metabolismo , Alineación de Secuencia
19.
Proc Biol Sci ; 282(1815)2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26378221

RESUMEN

There is extensive evidence from model systems that disrupting associations between co-adapted mitochondrial and nuclear genotypes can lead to deleterious and even lethal consequences. While it is tempting to extrapolate from these observations and make inferences about the human-health effects of altering mitonuclear associations, the importance of such associations may vary greatly among species, depending on population genetics, demographic history and other factors. Remarkably, despite the extensive study of human population genetics, the statistical associations between nuclear and mitochondrial alleles remain largely uninvestigated. We analysed published population genomic data to test for signatures of historical selection to maintain mitonuclear associations, particularly those involving nuclear genes that encode mitochondrial-localized proteins (N-mt genes). We found that significant mitonuclear linkage disequilibrium (LD) exists throughout the human genome, but these associations were generally weak, which is consistent with the paucity of population genetic structure in humans. Although mitonuclear LD varied among genomic regions (with especially high levels on the X chromosome), N-mt genes were statistically indistinguishable from background levels, suggesting that selection on mitonuclear epistasis has not preferentially maintained associations involving this set of loci at a species-wide level. We discuss these findings in the context of the ongoing debate over mitochondrial replacement therapy.


Asunto(s)
ADN Mitocondrial/genética , Genoma Humano/genética , Desequilibrio de Ligamiento/genética , Mitocondrias/genética , Alelos , Cromosomas Humanos X , Genética de Población , Humanos , Análisis de Componente Principal
20.
J Exp Biol ; 217(Pt 13): 2309-20, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24744415

RESUMEN

Studies of euryhaline crustaceans have identified conserved osmoregulatory adaptions allowing hyper-osmoregulation in dilute waters. However, previous studies have mainly examined decapod brachyurans with marine ancestries inhabiting estuaries or tidal creeks on a seasonal basis. Here, we describe osmoregulation in the atyid Halocaridina rubra, an endemic Hawaiian shrimp of freshwater ancestry from the islands' anchialine ecosystem (coastal ponds with subsurface freshwater and seawater connections) that encounters near-continuous spatial and temporal salinity changes. Given this, survival and osmoregulatory responses were examined over a wide salinity range. In the laboratory, H. rubra tolerated salinities of ~0-56‰, acting as both a hyper- and hypo-osmoregulator and maintaining a maximum osmotic gradient of ~868 mOsm kg(-1) H2O in freshwater. Furthermore, hemolymph osmolality was more stable during salinity transfers relative to other crustaceans. Silver nitrate and vital mitochondria-rich cell staining suggest all gills are osmoregulatory, with a large proportion of each individual gill functioning in ion transport (including when H. rubra acts as an osmoconformer in seawater). Additionally, expression of ion transporters and supporting enzymes that typically undergo upregulation during salinity transfer in osmoregulatory gills (i.e. Na(+)/K(+)-ATPase, carbonic anhydrase, Na(+)/K(+)/2Cl(-) cotransporter, V-type H(+)-ATPase and arginine kinase) were generally unaltered in H. rubra during similar transfers. These results suggest H. rubra (and possibly other anchialine species) maintains high, constitutive levels of gene expression and ion transport capability in the gills as a means of potentially coping with the fluctuating salinities that are encountered in anchialine habitats. Thus, anchialine taxa represent an interesting avenue for future physiological research.


Asunto(s)
Decápodos/fisiología , Osmorregulación , Salinidad , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Proliferación Celular , Decápodos/química , Decápodos/genética , Regulación de la Expresión Génica , Hawaii , Hemolinfa/química , Transporte Iónico , Mitocondrias/fisiología , Datos de Secuencia Molecular , Concentración Osmolar , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA