Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Pathol ; 262(1): 76-89, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37842959

RESUMEN

A 'classical' and a 'basal-like' subtype of pancreatic cancer have been reported, with differential expression of GATA6 and different dosages of mutant KRAS. We established in situ detection of KRAS point mutations and mRNA panels for the consensus subtypes aiming to project these findings to paraffin-embedded clinical tumour samples for spatial quantitative analysis. We unveiled that, next to inter-patient and intra-patient inter-ductal heterogeneity, intraductal spatial phenotypes exist with anti-correlating expression levels of GATA6 and KRASG12D . The basal-like mRNA panel better captured the basal-like cell states than widely used protein markers. The panels corroborated the co-existence of the classical and basal-like cell states in a single tumour duct with functional diversification, i.e. proliferation and epithelial-to-mesenchymal transition respectively. Mutant KRASG12D detection ascertained an epithelial origin of vimentin-positive cells in the tumour. Uneven spatial distribution of cancer-associated fibroblasts could recreate similar intra-organoid diversification. This extensive heterogeneity with functional cooperation of plastic tumour cells poses extra challenges to therapeutic approaches. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas/patología , Fenotipo , ARN Mensajero , Carcinoma Ductal Pancreático/patología
2.
Gut ; 72(7): 1326-1339, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36442992

RESUMEN

OBJECTIVE: Biological insights into the stepwise development and progression of colorectal cancer (CRC) are imperative to develop tailored approaches for early detection and optimal clinical management of this disease. Here, we aimed to dissect the transcriptional and immunologic alterations that accompany malignant transformation in CRC and to identify clinically relevant biomarkers through spatial profiling of pT1 CRC samples. DESIGN: We employed digital spatial profiling (GeoMx) on eight pT1 CRCs to study gene expression in the epithelial and stromal segments across regions of distinct histology, including normal mucosa, low-grade and high-grade dysplasia and cancer. Consecutive histology sections were profiled by imaging mass cytometry to reveal immune contextures. Finally, publicly available single-cell RNA-sequencing data was analysed to determine the cellular origin of relevant transcripts. RESULTS: Comparison of gene expression between regions within pT1 CRC samples identified differentially expressed genes in the epithelium (n=1394 genes) and the stromal segments (n=1145 genes) across distinct histologies. Pathway analysis identified an early onset of inflammatory responses during malignant transformation, typified by upregulation of gene signatures such as innate immune sensing. We detected increased infiltration of myeloid cells and a shift in macrophage populations from pro-inflammatory HLA-DR+CD204- macrophages to HLA-DR-CD204+ immune-suppressive subsets from normal tissue through dysplasia to cancer, accompanied by the upregulation of the CD47/SIRPα 'don't eat me signal'. CONCLUSION: Spatial profiling revealed the molecular and immunological landscape of CRC tumourigenesis at early disease stage. We identified biomarkers with strong association with disease progression as well as targetable immune processes that are exploitable in a clinical setting.


Asunto(s)
Neoplasias Colorrectales , Transcriptoma , Humanos , Neoplasias Colorrectales/patología , Perfilación de la Expresión Génica , Transformación Celular Neoplásica/genética , Biomarcadores
3.
Int J Mol Sci ; 24(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37240052

RESUMEN

The lack of response to therapy in pancreatic ductal adenocarcinoma (PDAC) patients has contributed to PDAC having one of the lowest survival rates of all cancer types. The poor survival of PDAC patients urges the exploration of novel treatment strategies. Immunotherapy has shown promising results in several other cancer types, but it is still ineffective in PDAC. What sets PDAC apart from other cancer types is its tumour microenvironment (TME) with desmoplasia and low immune infiltration and activity. The most abundant cell type in the TME, cancer-associated fibroblasts (CAFs), could be instrumental in why low immunotherapy responses are observed. CAF heterogeneity and interactions with components of the TME is an emerging field of research, where many paths are to be explored. Understanding CAF-immune cell interactions in the TME might pave the way to optimize immunotherapy efficacy for PDAC and related cancers with stromal abundance. In this review, we discuss recent discoveries on the functions and interactions of CAFs and how targeting CAFs might improve immunotherapy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Inmunoterapia , Microambiente Tumoral , Neoplasias Pancreáticas
4.
Gut ; 71(11): 2266-2283, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35074907

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) has the characteristics of high-density desmoplastic stroma, a distinctive immunosuppressive microenvironment and is profoundly resistant to all forms of chemotherapy and immunotherapy, leading to a 5-year survival rate of 9%. Our study aims to add novel small molecule therapeutics for the treatment of PDAC. DESIGN: We have studied whether TAK-981, a novel highly selective and potent small molecule inhibitor of the small ubiquitin like modifier (SUMO) activating enzyme E1 could be used to treat a preclinical syngeneic PDAC mouse model and we have studied the mode of action of TAK-981. RESULTS: We found that SUMOylation, a reversible post-translational modification required for cell cycle progression, is increased in PDAC patient samples compared with normal pancreatic tissue. TAK-981 decreased SUMOylation in PDAC cells at the nanomolar range, thereby causing a G2/M cell cycle arrest, mitotic failure and chromosomal segregation defects. TAK-981 efficiently limited tumour burden in the KPC3 syngeneic mouse model without evidence of systemic toxicity. In vivo treatment with TAK-981 enhanced the proportions of activated CD8 T cells and natural killer (NK) cells but transiently decreased B cell numbers in tumour, peripheral blood, spleen and lymph nodes. Single cell RNA sequencing revealed activation of the interferon response on TAK-981 treatment in lymphocytes including T, B and NK cells. TAK-981 treatment of CD8 T cells ex vivo induced activation of STAT1 and interferon target genes. CONCLUSION: Our findings indicate that pharmacological inhibition of the SUMO pathway represents a potential strategy to target PDAC via a dual mechanism: inhibiting cancer cell cycle progression and activating anti-tumour immunity by inducing interferon signalling.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/patología , Ciclo Celular , Proliferación Celular , Interferones , Células Asesinas Naturales , Ratones , Neoplasias Pancreáticas/patología , Sumoilación , Microambiente Tumoral , Enzimas Activadoras de Ubiquitina , Ubiquitinas/metabolismo , Neoplasias Pancreáticas
5.
Br J Cancer ; 126(2): 297-301, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34703008

RESUMEN

BACKGROUND: Long-term use of statins is associated with a small reduced risk of colorectal cancer but their mechanism of action is not well understood. While they are generally believed to act on KRAS, we have previously proposed that they act via influencing the BMP pathway. The objective of this study was to look for associations between statin use and the risk of developing colorectal cancer of a particular molecular subtype. METHODS: By linking two registries unique to the Netherlands, 69,272 statin users and 94,753 controls were identified and, if they developed colorectal cancer, their specimens traced. Colorectal cancers were molecularly subtyped according to the expression of SMAD4 and the mutation status of KRAS and BRAF. RESULTS: Statin use was associated with a reduction in the risk of developing colorectal cancer regardless of molecular subtype (HR 0.77; 95% CI 0.66-0.89) and a larger reduction in the risk of developing SMAD4-positive colorectal cancer (OR 0.64; 95% CI 0.42-0.82). There was no relationship between statin use and the risk of developing colorectal cancer with a mutation in KRAS and/or BRAF. CONCLUSIONS: Statin use is associated with a reduced risk of developing colorectal cancer with intact SMAD4 expression.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/prevención & control , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína Smad4/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Países Bajos , Proteína Smad4/genética
6.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35328567

RESUMEN

Cancers affecting the gastrointestinal system are highly prevalent and their incidence is still increasing. Among them, gastric and pancreatic cancers have a dismal prognosis (survival of 5-20%) and are defined as difficult-to-treat cancers. This reflects the urge for novel therapeutic targets and aims for personalised therapies. As a prerequisite for identifying targets and test therapeutic interventions, the development of well-established, translational and reliable preclinical research models is instrumental. This review discusses the development, advantages and limitations of both patient-derived organoids (PDO) and patient-derived xenografts (PDX) for gastric and pancreatic ductal adenocarcinoma (PDAC). First and next generation multicellular PDO/PDX models are believed to faithfully generate a patient-specific avatar in a preclinical setting, opening novel therapeutic directions for these difficult-to-treat cancers. Excitingly, future opportunities such as PDO co-cultures with immune or stromal cells, organoid-on-a-chip models and humanised PDXs are the basis of a completely new area, offering close-to-human models. These tools can be exploited to understand cancer heterogeneity, which is indispensable to pave the way towards more tumour-specific therapies and, with that, better survival for patients.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Gastrointestinales , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/terapia , Humanos , Organoides/patología , Neoplasias Pancreáticas/patología
7.
Br J Cancer ; 124(12): 1978-1987, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33742146

RESUMEN

BACKGROUND: Epidemiological studies and meta-analyses show an association between statin use and a reduced incidence of colorectal cancer (CRC). We have shown that statins act on CRC through bone morphogenetic protein (BMP) signalling, but the exact cellular targets and underlying mechanism of statin action remain elusive. In this study, we set out to assess the influence of statins on global cancer cell signalling by performing an array-based kinase assay using immobilised kinase substrates spanning the entire human kinome. METHODS: CRC cells with or without Lovastatin treatment were used for kinome analysis. Findings on kinome arrays were further confirmed by immunoblotting with activity-specific antibodies. Experiments in different CRC cell lines using immunoblotting, siRNA-mediated knockdown and treatment with specific BMP inhibitor Noggin were performed. The relevance of in vitro findings was confirmed in xenografts and in CRC patients treated with Simvastatin. RESULTS: Kinome analysis can distinguish between non-specific, toxic effects caused by 10 µM of Lovastatin and specific effects on cell signalling caused by 2 µM Lovastatin. Statins induce upregulation of PTEN activity leading to downregulation of the PI3K/Akt/mTOR signalling. Treatment of cells with the specific BMP inhibitor Noggin as well as PTEN knockdown and transfection of cells with a constitutively active form of AKT abolishes the effect of Lovastatin on mTOR phosphorylation. Experiments in xenografts and in patients treated with Simvastatin confirm statin-mediated BMP pathway activation, activation of PTEN and downregulation of mTOR signalling. CONCLUSIONS: Statins induce BMP-specific activation of PTEN and inhibition of PI3K/Akt/mTOR signalling in CRC.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Fosfotransferasas/metabolismo , Proteoma/efectos de los fármacos , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Femenino , Células HCT116 , Células HT29 , Humanos , Lovastatina/farmacología , Ratones , Ratones Desnudos , Fosfoproteínas/efectos de los fármacos , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Fosfotransferasas/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteoma/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Nature ; 522(7556): 345-348, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-25822788

RESUMEN

Metastatic disease remains the primary cause of death for patients with breast cancer. The different steps of the metastatic cascade rely on reciprocal interactions between cancer cells and their microenvironment. Within this local microenvironment and in distant organs, immune cells and their mediators are known to facilitate metastasis formation. However, the precise contribution of tumour-induced systemic inflammation to metastasis and the mechanisms regulating systemic inflammation are poorly understood. Here we show that tumours maximize their chance of metastasizing by evoking a systemic inflammatory cascade in mouse models of spontaneous breast cancer metastasis. We mechanistically demonstrate that interleukin (IL)-1ß elicits IL-17 expression from gamma delta (γδ) T cells, resulting in systemic, granulocyte colony-stimulating factor (G-CSF)-dependent expansion and polarization of neutrophils in mice bearing mammary tumours. Tumour-induced neutrophils acquire the ability to suppress cytotoxic T lymphocytes carrying the CD8 antigen, which limit the establishment of metastases. Neutralization of IL-17 or G-CSF and absence of γδ T cells prevents neutrophil accumulation and downregulates the T-cell-suppressive phenotype of neutrophils. Moreover, the absence of γδ T cells or neutrophils profoundly reduces pulmonary and lymph node metastases without influencing primary tumour progression. Our data indicate that targeting this novel cancer-cell-initiated domino effect within the immune system--the γδ T cell/IL-17/neutrophil axis--represents a new strategy to inhibit metastatic disease.


Asunto(s)
Neoplasias de la Mama/patología , Interleucina-17/biosíntesis , Metástasis de la Neoplasia/inmunología , Metástasis de la Neoplasia/patología , Neutrófilos/metabolismo , Subgrupos de Linfocitos T/metabolismo , Animales , Neoplasias de la Mama/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Femenino , Factor Estimulante de Colonias de Granulocitos/inmunología , Factor Estimulante de Colonias de Granulocitos/metabolismo , Interleucina-17/inmunología , Interleucina-1beta/inmunología , Pulmón/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Metástasis Linfática/inmunología , Metástasis Linfática/patología , Activación de Linfocitos , Ratones , Neutrófilos/citología , Neutrófilos/inmunología , Fenotipo , Subgrupos de Linfocitos T/inmunología , Microambiente Tumoral
9.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008560

RESUMEN

Professional antigen-presenting cells (APCs), such as dendritic cells and macrophages, are known for their ability to present exogenous antigens to T cells. However, many other cell types, including endothelial cells, fibroblasts, and lymph node stromal cells, are also capable of presenting exogenous antigens to either CD8+ or CD4+ T cells via cross-presentation or major histocompatibility complex (MHC) class II-mediated presentation, respectively. Antigen presentation by these stromal nonprofessional APCs differentially affect T cell function, depending on the type of cells that present the antigen, as well as the local (inflammatory) micro-environment. It has been recently appreciated that nonprofessional APCs can, as such, orchestrate immunity against pathogens, tumor survival, or rejection, and aid in the progression of various auto-immune pathologies. Therefore, the interest for these nonprofessional APCs is growing as they might be an important target for enhancing various immunotherapies. In this review, the different nonprofessional APCs are discussed, as well as their functional consequences on the T cell response, with a focus on immuno-oncology.


Asunto(s)
Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/inmunología , Células del Estroma/inmunología , Animales , Reactividad Cruzada/inmunología , Células Endoteliales/inmunología , Humanos , Linfocitos T/inmunología
10.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946583

RESUMEN

Molecular imaging of pathologic lesions can improve efficient detection of cancer and cardiovascular diseases. A shared pathophysiological feature is angiogenesis, the formation of new blood vessels. Endoglin (CD105) is a coreceptor for ligands of the Transforming Growth Factor-ß (TGF-ß) family and is highly expressed on angiogenic endothelial cells. Therefore, endoglin-based imaging has been explored to visualize lesions of the aforementioned diseases. This systematic review highlights the progress in endoglin-based imaging of cancer, atherosclerosis, myocardial infarction, and aortic aneurysm, focusing on positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), near-infrared fluorescence (NIRF) imaging, and ultrasound imaging. PubMed was searched combining the following subjects and their respective synonyms or relevant subterms: "Endoglin", "Imaging/Image-guided surgery". In total, 59 papers were found eligible to be included: 58 reporting about preclinical animal or in vitro models and one ex vivo study in human organs. In addition to exact data extraction of imaging modality type, tumor or cardiovascular disease model, and tracer (class), outcomes were described via a narrative synthesis. Collectively, the data identify endoglin as a suitable target for intraoperative and diagnostic imaging of the neovasculature in tumors, whereas for cardiovascular diseases, the evidence remains scarce but promising.


Asunto(s)
Enfermedades Cardiovasculares/diagnóstico por imagen , Endoglina/análisis , Neoplasias/diagnóstico por imagen , Animales , Enfermedades Cardiovasculares/cirugía , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias/cirugía , Imagen Óptica/métodos , Tomografía de Emisión de Positrones/métodos , Cirugía Asistida por Computador/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Ultrasonografía/métodos
11.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375670

RESUMEN

Approximately 30 years ago, endoglin was identified as a transforming growth factor (TGF)-ß coreceptor with a crucial role in developmental biology and tumor angiogenesis. Its selectively high expression on tumor vessels and its correlation with poor survival in cancer patients led to the exploration of endoglin as a therapeutic target for cancer. The endoglin neutralizing antibody TRC105 (Carotuximab®, Tracon Pharmaceuticals (San Diego, CA, USA) was subsequently tested in a wide variety of preclinical cancer models before being tested in phase I-III clinical studies in cancer patients as both a monotherapy and in combination with other chemotherapeutic and anti-angiogenic therapies. The combined data of these studies have revealed new insights into the role of endoglin in angiogenesis and its expression and functional role on other cells in the tumor microenvironment. In this review, we will summarize the preclinical work, clinical trials and biomarker studies of TRC105 and explore what these studies have enabled us to learn and what questions remain unanswered.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos Inmunológicos/farmacología , Endoglina/antagonistas & inhibidores , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Antineoplásicos Inmunológicos/uso terapéutico , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Endoglina/genética , Endoglina/metabolismo , Humanos , Imagen Molecular , Terapia Molecular Dirigida , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
12.
Int J Mol Sci ; 21(11)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486027

RESUMEN

The bone morphogenetic proteins (BMPs), a subgroup of the transforming growth factor-ß (TGF-ß) superfamily, are involved in multiple biological processes such as embryonic development and maintenance of adult tissue homeostasis. The importance of a functional BMP pathway is underlined by various diseases, including cancer, which can arise as a consequence of dysregulated BMP signaling. Mutations in crucial elements of this signaling pathway, such as receptors, have been reported to disrupt BMP signaling. Next to that, aberrant expression of BMP antagonists could also contribute to abrogated signaling. In this review we set out to highlight how BMP antagonists affect not only the cancer cells, but also the other cells present in the microenvironment to influence cancer progression.


Asunto(s)
Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/genética , Regulación Neoplásica de la Expresión Génica , Mutación , Neoplasias/metabolismo , Microambiente Tumoral , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Células Endoteliales/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Neoplasias/genética , Filogenia , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
13.
Cell Mol Life Sci ; 74(12): 2283-2298, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28168444

RESUMEN

Renal tubular epithelial cells are exposed to mechanical forces due to fluid flow shear stress within the lumen of the nephron. These cells respond by activation of mechano-sensors located at the plasma membrane or the primary cilium, having crucial roles in maintenance of cellular homeostasis and signaling. In this paper, we applied fluid shear stress to study TGF-ß signaling in renal epithelial cells with and without expression of the Pkd1-gene, encoding a mechano-sensor mutated in polycystic kidney disease. TGF-ß signaling modulates cell proliferation, differentiation, apoptosis, and fibrotic deposition, cellular programs that are altered in renal cystic epithelia. SMAD2/3-mediated signaling was activated by fluid flow, both in wild-type and Pkd1 -/- cells. This was characterized by phosphorylation and nuclear accumulation of p-SMAD2/3, as well as altered expression of downstream target genes and epithelial-to-mesenchymal transition markers. This response was still present after cilia ablation. An inhibitor of upstream type-I-receptors, ALK4/ALK5/ALK7, as well as TGF-ß-neutralizing antibodies effectively blocked SMAD2/3 activity. In contrast, an activin-ligand trap was ineffective, indicating that increased autocrine TGF-ß signaling is involved. To study potential involvement of MAPK/ERK signaling, cells were treated with a MEK1/2 inhibitor. Surprisingly, fluid flow-induced expression of most SMAD2/3 targets was further enhanced upon MEK inhibition. We conclude that fluid shear stress induces autocrine TGF-ß/ALK5-induced target gene expression in renal epithelial cells, which is partially restrained by MEK1/2-mediated signaling.


Asunto(s)
Células Epiteliales/metabolismo , Riñón/citología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Reología , Resistencia al Corte , Transducción de Señal , Estrés Mecánico , Activinas/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Biomarcadores/metabolismo , Cilios/metabolismo , Células Epiteliales/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Túbulos Renales Proximales/citología , Ligandos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Modelos Biológicos , Ratas , Receptor Tipo I de Factor de Crecimiento Transformador beta , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismo
14.
Gut ; 66(5): 939-954, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28336518

RESUMEN

OBJECTIVE: Bone morphogenetic protein (BMP)-9, a member of the transforming growth factor-ß family of cytokines, is constitutively produced in the liver. Systemic levels act on many organs and tissues including bone and endothelium, but little is known about its hepatic functions in health and disease. DESIGN: Levels of BMP-9 and its receptors were analysed in primary liver cells. Direct effects of BMP-9 on hepatic stellate cells (HSCs) and hepatocytes were studied in vitro, and the role of BMP-9 was examined in acute and chronic liver injury models in mice. RESULTS: Quiescent and activated HSCs were identified as major BMP-9 producing liver cell type. BMP-9 stimulation of cultured hepatocytes inhibited proliferation, epithelial to mesenchymal transition and preserved expression of important metabolic enzymes such as cytochrome P450. Acute liver injury caused by partial hepatectomy or single injections of carbon tetrachloride (CCl4) or lipopolysaccharide (LPS) into mice resulted in transient downregulation of hepatic BMP-9 mRNA expression. Correspondingly, LPS stimulation led to downregulation of BMP-9 expression in cultured HSCs. Application of BMP-9 after partial hepatectomy significantly enhanced liver damage and disturbed the proliferative response. Chronic liver damage in BMP-9-deficient mice or in mice adenovirally overexpressing the selective BMP-9 antagonist activin-like kinase 1-Fc resulted in reduced deposition of collagen and subsequent fibrosis. CONCLUSIONS: Constitutive expression of low levels of BMP-9 stabilises hepatocyte function in the healthy liver. Upon HSC activation, endogenous BMP-9 levels increase in vitro and in vivo and high levels of BMP-9 cause enhanced damage upon acute or chronic injury.


Asunto(s)
Lesión Pulmonar Aguda/fisiopatología , Factor 2 de Diferenciación de Crecimiento/metabolismo , Factor 2 de Diferenciación de Crecimiento/farmacología , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/fisiología , Cirrosis Hepática/metabolismo , Regeneración Hepática/efectos de los fármacos , Lesión Pulmonar Aguda/genética , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Factor 2 de Diferenciación de Crecimiento/antagonistas & inhibidores , Factor 2 de Diferenciación de Crecimiento/genética , Hepatectomía , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Lipopolisacáridos/farmacología , Cirrosis Hepática/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
15.
J Biol Chem ; 290(24): 14884-92, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25931117

RESUMEN

Autophagy is the targeted degradation of proteins and organelles critical for homeostasis and cell survival. Transforming growth factor ß (TGF-ß) differentially regulates autophagy in a context-specific manner, although the precise intracellular mechanisms remain less clear. Importantly, how TGF-ß controls autophagic responses in endothelial cells (EC) during angiogenesis is unknown. Here we identified endoglin, an EC-specific TGF-ß co-receptor essential for angiogenesis, as a key determinant of autophagy. Among the two opposing TGF-ß Smad pathways in the EC system (Smad1/5/8 and Smad2/3), we found Smad2 as the major transcriptional regulator of autophagy that targets beclin1 (BECN1) gene expression. Smad2, but not Smad3, acts as a repressor upstream of the BECN1 promoter region. Overall, endoglin promotes autophagy by impeding Smad2 transcriptional repressor activity. Notably, increased beclin1 levels upon Smad2 knockdown directly correlated with enhanced autophagy during angiogenesis. Taken together, these results establish endoglin as a critical mediator of autophagy and demonstrate a new transcriptional mechanism by which Smad2 inhibits angiogenesis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Endotelio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteína Smad2/fisiología , Animales , Secuencia de Bases , Beclina-1 , Células Cultivadas , Inmunoprecipitación de Cromatina , Cartilla de ADN , Endoglina , Endotelio/citología , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína Smad2/genética
17.
J Biol Chem ; 289(37): 25486-96, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25070888

RESUMEN

Endoglin is a transforming growth factor ß (TGF-ß) co-receptor essential for angiogenesis and tumor vascularization. Endoglin modulates the crucial balance between pro- and anti-angiogenic signaling by activin receptor-like kinase (ALK) 1, 5, and TGF-ß type II (TßRII) receptors. Despite its established role in physiology and disease, the mechanism of endoglin down-regulation remains unknown. Here we report that the conserved juxtamembrane cytoplasmic tyrosine motif ((612)YIY(614)) is a critical determinant of angiogenesis. Src directly phosphorylates this motif to induce endoglin internalization and degradation via the lysosome. We identified epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) as Src-activators that induce endoglin turnover following (612)YIY(614) phosphorylation. Interestingly, Src phosphorylation of endoglin-(612)YIY(614) was also an important process for receptor down-regulation by TRACON105 (TRC105), an endoglin-targeting antibody currently in clinical trials. The regulation of (612)YIY(614) phosphorylation was critical for angiogenesis, as both the phosphomimetic and unphosphorylatable mutants impaired endothelial functions including proliferation, migration, and capillary tube formation. Collectively, these findings establish Src and pro-angiogenic mitogens as critical mediators of endoglin stability and function.


Asunto(s)
Secuencias de Aminoácidos/genética , Antígenos CD/genética , Neovascularización Fisiológica/genética , Receptores de Superficie Celular/genética , Familia-src Quinasas/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Proliferación Celular/genética , Endoglina , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
18.
Cell Mol Gastroenterol Hepatol ; 17(5): 821-826, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38307492

RESUMEN

Cancer-associated fibroblasts (CAFs) are an abundant component of the tumor microenvironment and have been shown to possess critical functions in tumor progression. Although their roles predominantly have been described as tumor-promoting, more recent findings have identified subsets of CAFs with tumor-restraining functions. Accumulating evidence underscores large heterogeneity in fibroblast subsets in which distinct subsets differentially impact the initiation, progression, and metastasis of colorectal cancer. In this review, we summarize and discuss the evolving role of CAFs in colorectal cancer, highlighting the ongoing controversies regarding their distinct origins and multifaceted functions. In addition, we explore how CAFs can confer resistance to current therapies and the challenges of developing effective CAF-directed therapies. Taken together, we believe that, in this rapidly evolving field, it is crucial first to understand CAF dynamics comprehensively, and to bridge existing knowledge gaps regarding CAF heterogeneity and plasticity before further exploring the clinical targeting of CAFs.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Humanos , Fibroblastos/patología , Fibroblastos Asociados al Cáncer/patología , Carcinogénesis/patología , Transformación Celular Neoplásica/patología , Neoplasias Colorrectales/patología , Microambiente Tumoral
19.
J Clin Invest ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042469

RESUMEN

Crohn's disease (CD) is marked by recurring intestinal inflammation and tissue injury, often resulting in fibro-stenosis and bowel obstruction, necessitating surgical intervention with high recurrence rates. To elucidate to the mechanisms underlying fibro-stenosis in CD, we analysed the transcriptome of cells isolated from the transmural ileum of CD patients, including a trio of lesions from each patient: non-affected, inflamed, and stenotic ileum samples, and compared them with samples from non-CD patients. Our computational analysis revealed that pro-fibrotic signals from a subset of monocyte-derived cells expressing CD150 induced a disease-specific fibroblast population, resulting in chronic inflammation and tissue fibrosis. The transcription factor TWIST1 was identified as a key modulator of fibroblast activation and extracellular matrix (ECM) deposition. Genetic and pharmacological inhibition of TWIST1 prevents fibroblast activation, reducing ECM production and collagen deposition. Our findings suggest that the myeloid-stromal axis may offer a promising therapeutic target to prevent fibro-stenosis in CD.

20.
EBioMedicine ; 105: 105219, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38941955

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a tumour entity with unmet medical need. To assess the therapeutic potential of oncolytic virotherapy (OVT) against PDAC, different oncolytic viruses (OVs) are currently investigated in clinical trials. However, systematic comparisons of these different OVs in terms of efficacy against PDAC and biomarkers predicting therapeutic response are lacking. METHODS: We screened fourteen patient-derived PDAC cultures which reflect the intra- and intertumoural heterogeneity of PDAC for their sensitivity to five clinically relevant OVs, namely serotype 5 adenovirus Ad5-hTERT, herpes virus T-VEC, measles vaccine strain MV-NIS, reovirus jin-3, and protoparvovirus H-1PV. Live cell analysis, quantification of viral genome/gene expression, cell viability as well as cytotoxicity assays and titration of viral progeny were conducted. Transcriptome profiling was employed to identify potential predictive biomarkers for response to OV treatment. FINDINGS: Patient-derived PDAC cultures showed individual response patterns to OV treatment. Twelve of fourteen cultures were responsive to at least one OV, with no single OV proving superior or inferior across all cultures. Known host factors for distinct viruses were retrieved as potential biomarkers. Compared to the classical molecular subtype, the quasi-mesenchymal or basal-like subtype of PDAC was found to be more sensitive to H-1PV, jin-3, and T-VEC. Generally, expression of viral entry receptors did not correlate with sensitivity to OV treatment, with one exception: Expression of Galectin-1 (LGALS1), a factor involved in H-1PV entry, positively correlated with H-1PV induced cell killing. Rather, cellular pathways controlling immunological, metabolic and proliferative signaling appeared to determine outcome. For instance, high baseline expression of interferon-stimulated genes (ISGs) correlated with relative resistance to oncolytic measles virus, whereas low cyclic GMP-AMP synthase (cGAS) expression was associated with exceptional response. Combination treatment of MV-NIS with a cGAS inhibitor improved tumour cell killing in several PDAC cultures and cells overexpressing cGAS were found to be less sensitive to MV oncolysis. INTERPRETATION: Considering the heterogeneity of PDAC and the complexity of biological therapies such as OVs, no single biomarker can explain the spectrum of response patterns. For selection of a particular OV, PDAC molecular subtype, ISG expression as well as activation of distinct signaling and metabolic pathways should be considered. Combination therapies can overcome resistance in specific constellations. Overall, oncolytic virotherapy is a viable treatment option for PDAC, which warrants further development. This study highlights the need for personalised treatment in OVT. By providing all primary data, this study provides a rich source and guidance for ongoing developments. FUNDING: German National Science Foundation (Deutsche Forschungsgemeinschaft, DFG), German Cancer Aid (Deutsche Krebshilfe), German National Academic Scholarship Foundation (Studienstiftung des deutschen Volkes), Survival with Pancreatic Cancer Foundation.


Asunto(s)
Biomarcadores de Tumor , Viroterapia Oncolítica , Virus Oncolíticos , Neoplasias Pancreáticas , Humanos , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/metabolismo , Perfilación de la Expresión Génica , Línea Celular Tumoral , Supervivencia Celular , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA