Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Ecol Evol ; 2(11): 1735-1744, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30349095

RESUMEN

Human societies depend on an Earth system that operates within a constrained range of nutrient availability, yet the recent trajectory of terrestrial nitrogen (N) availability is uncertain. Examining patterns of foliar N concentrations and isotope ratios (δ15N) from more than 43,000 samples acquired over 37 years, here we show that foliar N concentration declined by 9% and foliar δ15N declined by 0.6-1.6‰. Examining patterns across different climate spaces, foliar δ15N declined across the entire range of mean annual temperature and mean annual precipitation tested. These results suggest declines in N supply relative to plant demand at the global scale. In all, there are now multiple lines of evidence of declining N availability in many unfertilized terrestrial ecosystems, including declines in δ15N of tree rings and leaves from herbarium samples over the past 75-150 years. These patterns are consistent with the proposed consequences of elevated atmospheric carbon dioxide and longer growing seasons. These declines will limit future terrestrial carbon uptake and increase nutritional stress for herbivores.


Asunto(s)
Ecosistema , Eutrofización , Nitrógeno/metabolismo , Plantas/metabolismo , Isótopos de Nitrógeno/análisis
2.
Sci Total Environ ; 574: 148-154, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27627690

RESUMEN

Endemic Westland petrels (Procellaria westlandica) are a remnant of extensive seabird populations that occupied the forested hill country of prehuman New Zealand. Because seabird guano is rich in Se, an often-deficient essential element, we proposed that Westland petrels enhance Se concentrations in ecosystems associated with their breeding grounds. We sampled terrestrial (soil, plants, riparian spiders) and freshwater (benthic invertebrates, fish) components from Westland petrel-enriched and non-seabird forests on the western coast of New Zealand's South Island, an area characterised by highly leached, nutrient-poor soils. Median seabird soil Se was an order of magnitude higher than soil from non-seabird sites (2.2mgkg-1 compared to 0.2mgkg-1), but corresponding plant foliage concentrations (0.06mgkg-1; 0.05mgkg-1) showed no difference between seabird and non-seabird sites. In streams, Se ranged from 0.05mgkg-1 (riparian foliage) to 3.1mgkg-1 (riparian spiders and freshwater mussels). However, there was no difference between seabird and non-seabird streams. Stoichiometric ratios (N:Se, P:Se) showed Se loss across all ecosystem components relative to seabird guano, except in seabird colony soil where N was lost preferentially. Seabirds therefore did not enrich the terrestrial plants and associated stream ecosystems in Se. We conclude that incorporation of trace elements brought ashore by seabirds cannot be assumed, even though seabirds are a significant source of marine-derived nutrients and trace elements to coastal ecosystems world-wide.


Asunto(s)
Aves , Ecosistema , Monitoreo del Ambiente , Cadena Alimentaria , Selenio/metabolismo , Animales , Bosques , Nueva Zelanda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA