Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Science ; 290(5499): 2117-9, 2000 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11118140

RESUMEN

The violation of mirror symmetry in the weak force provides a powerful tool to study the internal structure of the proton. Experimental results have been obtained that address the role of strange quarks in generating nuclear magnetism. The measurement reported here provides an unambiguous constraint on strange quark contributions to the proton's magnetic moment through the electron-proton weak interaction. We also report evidence for the existence of a parity-violating electromagnetic effect known as the anapole moment of the proton. The proton's anapole moment is not yet well understood theoretically, but it could have important implications for precision weak interaction studies in atomic systems such as cesium.

2.
Phys Rev Lett ; 95(9): 092001, 2005 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-16197209

RESUMEN

We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < or =Q2 < or =1.0 GeV2. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange-quark contributions to the currents of the proton. The measurements were made at Jefferson Laboratory using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate nonzero, Q2 dependent, strange-quark contributions and provide new information beyond that obtained in previous experiments.

3.
Phys Rev Lett ; 92(10): 102003, 2004 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-15089200

RESUMEN

We report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at backward angles at Q2=0.038 (GeV/c)2. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon, which can potentially receive large electroweak corrections. The measured asymmetry A=-3.51+/-0.57 (stat)+/-0.58 (syst) ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also consistent with theoretical predictions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA