Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nucleic Acids Res ; 49(D1): D924-D931, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33104772

RESUMEN

The Gene Expression Database (GXD; www.informatics.jax.org/expression.shtml) is an extensive and well-curated community resource of mouse developmental gene expression information. For many years, GXD has collected and integrated data from RNA in situ hybridization, immunohistochemistry, RT-PCR, northern blot, and western blot experiments through curation of the scientific literature and by collaborations with large-scale expression projects. Since our last report in 2019, we have continued to acquire these classical types of expression data; developed a searchable index of RNA-Seq and microarray experiments that allows users to quickly and reliably find specific mouse expression studies in ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) and GEO (https://www.ncbi.nlm.nih.gov/geo/); and expanded GXD to include RNA-Seq data. Uniformly processed RNA-Seq data are imported from the EBI Expression Atlas and then integrated with the other types of expression data in GXD, and with the genetic, functional, phenotypic and disease-related information in Mouse Genome Informatics (MGI). This integration has made the RNA-Seq data accessible via GXD's enhanced searching and filtering capabilities. Further, we have embedded the Morpheus heat map utility into the GXD user interface to provide additional tools for display and analysis of RNA-Seq data, including heat map visualization, sorting, filtering, hierarchical clustering, nearest neighbors analysis and visual enrichment.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Animales , Análisis por Conglomerados , Internet , Ratones , Proteínas/genética , Proteínas/metabolismo , Interfaz Usuario-Computador
2.
Nucleic Acids Res ; 47(D1): D774-D779, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30335138

RESUMEN

The mouse Gene Expression Database (GXD) is an extensive, well-curated community resource freely available at www.informatics.jax.org/expression.shtml. Covering all developmental stages, GXD includes data from RNA in situ hybridization, immunohistochemistry, RT-PCR, northern blot and western blot experiments in wild-type and mutant mice. GXD's gene expression information is integrated with the other data in Mouse Genome Informatics and interconnected with other databases, placing these data in the larger biological and biomedical context. Since the last report, the ability of GXD to provide insights into the molecular mechanisms of development and disease has been greatly enhanced by the addition of new data and by the implementation of new web features. These include: improvements to the Differential Gene Expression Data Search, facilitating searches for genes that have been shown to be exclusively expressed in a specified structure and/or developmental stage; an enhanced anatomy browser that now provides access to expression data and phenotype data for a given anatomical structure; direct access to the wild-type gene expression data for the tissues affected in a specific mutant; and a comparison matrix that juxtaposes tissues where a gene is normally expressed against tissues, where mutations in that gene cause abnormalities.


Asunto(s)
Bases de Datos Genéticas , Genoma/genética , Transcriptoma/genética , Animales , Internet , Ratones , Interfaz Usuario-Computador
3.
Nucleic Acids Res ; 45(D1): D730-D736, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899677

RESUMEN

The Gene Expression Database (GXD; www.informatics.jax.org/expression.shtml) is an extensive and well-curated community resource of mouse developmental expression information. Through curation of the scientific literature and by collaborations with large-scale expression projects, GXD collects and integrates data from RNA in situ hybridization, immunohistochemistry, RT-PCR, northern blot and western blot experiments. Expression data from both wild-type and mutant mice are included. The expression data are combined with genetic and phenotypic data in Mouse Genome Informatics (MGI) and made readily accessible to many types of database searches. At present, GXD includes over 1.5 million expression results and more than 300 000 images, all annotated with detailed and standardized metadata. Since our last report in 2014, we have added a large amount of data, we have enhanced data and database infrastructure, and we have implemented many new search and display features. Interface enhancements include: a new Mouse Developmental Anatomy Browser; interactive tissue-by-developmental stage and tissue-by-gene matrix views; capabilities to filter and sort expression data summaries; a batch search utility; gene-based expression overviews; and links to expression data from other species.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Expresión Génica , Genómica/métodos , Animales , Ontología de Genes , Ratones , Especificidad de Órganos , Motor de Búsqueda , Interfaz Usuario-Computador , Navegador Web
4.
PLoS Biol ; 13(1): e1002033, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25562316

RESUMEN

Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.


Asunto(s)
Estudios de Asociación Genética , Animales , Biología Computacional , Curaduría de Datos , Bases de Datos Factuales/normas , Interacción Gen-Ambiente , Genómica , Humanos , Fenotipo , Estándares de Referencia , Reproducibilidad de los Resultados , Terminología como Asunto
5.
Nucleic Acids Res ; 42(Database issue): D818-24, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24163257

RESUMEN

The Gene Expression Database (GXD; http://www.informatics.jax.org/expression.shtml) is an extensive and well-curated community resource of mouse developmental expression information. GXD collects different types of expression data from studies of wild-type and mutant mice, covering all developmental stages and including data from RNA in situ hybridization, immunohistochemistry, RT-PCR, northern blot and western blot experiments. The data are acquired from the scientific literature and from researchers, including groups doing large-scale expression studies. Integration with the other data in Mouse Genome Informatics (MGI) and interconnections with other databases places GXD's gene expression information in the larger biological and biomedical context. Since the last report, the utility of GXD has been greatly enhanced by the addition of new data and by the implementation of more powerful and versatile search and display features. Web interface enhancements include the capability to search for expression data for genes associated with specific phenotypes and/or human diseases; new, more interactive data summaries; easy downloading of data; direct searches of expression images via associated metadata; and new displays that combine image data and their associated annotations. At present, GXD includes >1.4 million expression results and 250,000 images that are accessible to our search tools.


Asunto(s)
Bases de Datos Genéticas , Expresión Génica , Ratones/genética , Animales , Internet , Interfaz Usuario-Computador
6.
Genesis ; 53(8): 510-22, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26045019

RESUMEN

The Gene Expression Database (GXD) is an extensive and freely available community resource of mouse developmental expression data. GXD curates and integrates expression data from the literature, via electronic data submissions, and by collaborations with large-scale projects. As an integral component of the Mouse Genome Informatics Resource, GXD combines expression data with genetic, functional, phenotypic, and disease-related data, and provides tools for the research community to search for and analyze expression data in this larger context. Recent enhancements include: an interactive browser to navigate the mouse developmental anatomy and find expression data for specific anatomical structures; the capability to search for expression data of genes located in specific genomic regions, supporting the identification of disease candidate genes; a summary displaying all the expression images that meet specified search criteria; interactive matrix views that provide overviews of spatio-temporal expression patterns (Tissue × Stage Matrix) and enable the comparison of expression patterns between genes (Tissue × Gene Matrix); data zoom and filter utilities to iteratively refine summary displays and data sets; and gene-based links to expression data from other model organisms, such as chicken, Xenopus, and zebrafish, fostering comparative expression analysis for species that are highly relevant for developmental research.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Ratones/genética , Animales , Curaduría de Datos , Genómica/métodos , Internet , Modelos Animales
7.
Mamm Genome ; 26(9-10): 422-30, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26208972

RESUMEN

Mouse anatomy ontologies provide standard nomenclature for describing normal and mutant mouse anatomy, and are essential for the description and integration of data directly related to anatomy such as gene expression patterns. Building on our previous work on anatomical ontologies for the embryonic and adult mouse, we have recently developed a new and substantially revised anatomical ontology covering all life stages of the mouse. Anatomical terms are organized in complex hierarchies enabling multiple relationships between terms. Tissue classification as well as partonomic, developmental, and other types of relationships can be represented. Hierarchies for specific developmental stages can also be derived. The ontology forms the core of the eMouse Atlas Project (EMAP) and is used extensively for annotating and integrating gene expression patterns and other data by the Gene Expression Database (GXD), the eMouse Atlas of Gene Expression (EMAGE) and other database resources. Here we illustrate the evolution of the developmental and adult mouse anatomical ontologies toward one combined system. We report on recent ontology enhancements, describe the current status, and discuss future plans for mouse anatomy ontology development and application in integrating data resources.


Asunto(s)
Biología Computacional , Especificidad de Órganos/genética , Programas Informáticos , Animales , Bases de Datos Genéticas , Regulación del Desarrollo de la Expresión Génica , Ratones
8.
Mamm Genome ; 26(7-8): 314-24, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25939429

RESUMEN

The Gene Expression Database (GXD) is an extensive, easily searchable, and freely available database of mouse gene expression information (www.informatics.jax.org/expression.shtml). GXD was developed to foster progress toward understanding the molecular basis of human development and disease. GXD contains information about when and where genes are expressed in different tissues in the mouse, especially during the embryonic period. GXD collects different types of expression data from wild-type and mutant mice, including RNA in situ hybridization, immunohistochemistry, RT-PCR, and northern and western blot results. The GXD curators read the scientific literature and enter the expression data from those papers into the database. GXD also acquires expression data directly from researchers, including groups doing large-scale expression studies. GXD currently contains nearly 1.5 million expression results for over 13,900 genes. In addition, it has over 265,000 images of expression data, allowing users to retrieve the primary data and interpret it themselves. By being an integral part of the larger Mouse Genome Informatics (MGI) resource, GXD's expression data are combined with other genetic, functional, phenotypic, and disease-oriented data. This allows GXD to provide tools for researchers to evaluate expression data in the larger context, search by a wide variety of biologically and biomedically relevant parameters, and discover new data connections to help in the design of new experiments. Thus, GXD can provide researchers with critical insights into the functions of genes and the molecular mechanisms of development, differentiation, and disease.


Asunto(s)
Minería de Datos/métodos , Bases de Datos Genéticas , Genoma , Interfaz Usuario-Computador , Animales , Embrión de Mamíferos , Expresión Génica , Marcadores Genéticos , Humanos , Difusión de la Información , Ratones , Especificidad de Órganos
9.
Nucleic Acids Res ; 39(Database issue): D835-41, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21062809

RESUMEN

The Gene Expression Database (GXD) is a community resource of mouse developmental expression information. GXD integrates different types of expression data at the transcript and protein level and captures expression information from many different mouse strains and mutants. GXD places these data in the larger biological context through integration with other Mouse Genome Informatics (MGI) resources and interconnections with many other databases. Web-based query forms support simple or complex searches that take advantage of all these integrated data. The data in GXD are obtained from the literature, from individual laboratories, and from large-scale data providers. All data are annotated and reviewed by GXD curators. Since the last report, the GXD data content has increased significantly, the interface and data displays have been improved, new querying capabilities were implemented, and links to other expression resources were added. GXD is available through the MGI web site (www.informatics.jax.org), or directly at www.informatics.jax.org/expression.shtml.


Asunto(s)
Bases de Datos Genéticas , Expresión Génica , Ratones/genética , Animales , Gráficos por Computador , Ratones/embriología , Ratones/crecimiento & desarrollo , Interfaz Usuario-Computador
10.
J Biomed Inform ; 42(3): 571-80, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19154797

RESUMEN

The National Cancer Institute (NCI) is developing an integrated biomedical informatics infrastructure, the cancer Biomedical Informatics Grid (caBIG), to support collaboration within the cancer research community. A key part of the caBIG architecture is the establishment of terminology standards for representing data. In order to evaluate the suitability of existing controlled terminologies, the caBIG Vocabulary and Data Elements Workspace (VCDE WS) working group has developed a set of criteria that serve to assess a terminology's structure, content, documentation, and editorial process. This paper describes the evolution of these criteria and the results of their use in evaluating four standard terminologies: the Gene Ontology (GO), the NCI Thesaurus (NCIt), the Common Terminology for Adverse Events (known as CTCAE), and the laboratory portion of the Logical Objects, Identifiers, Names and Codes (LOINC). The resulting caBIG criteria are presented as a matrix that may be applicable to any terminology standardization effort.


Asunto(s)
Informática Médica , Terminología como Asunto , National Institutes of Health (U.S.) , Estados Unidos
11.
Nucleic Acids Res ; 35(Database issue): D618-23, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17130151

RESUMEN

The Gene Expression Database (GXD) provides the scientific community with an extensive and easily searchable database of gene expression information about the mouse. Its primary emphasis is on developmental studies. By integrating different types of expression data, GXD aims to provide comprehensive information about expression patterns of transcripts and proteins in wild-type and mutant mice. Integration with the other Mouse Genome Informatics (MGI) databases places the gene expression information in the context of genetic, sequence, functional and phenotypic information, enabling valuable insights into the molecular biology that underlies developmental and disease processes. In recent years the utility of GXD has been greatly enhanced by a large increase in data content, obtained from the literature and provided by researchers doing large-scale in situ and cDNA screens. In addition, we have continued to refine our query and display features to make it easier for users to interrogate the data. GXD is available through the MGI web site at http://www.informatics.jax.org/ or directly at http://www.informatics.jax.org/menus/expression_menu.shtml.


Asunto(s)
Bases de Datos Genéticas , Expresión Génica , Ratones/genética , Animales , Internet , Ratones/embriología , Ratones/metabolismo , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/metabolismo , Interfaz Usuario-Computador
12.
Nucleic Acids Res ; 32(Database issue): D568-71, 2004 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-14681482

RESUMEN

The Gene Expression Database (GXD) is a community resource for gene expression information in the laboratory mouse. By collecting and integrating different types of expression data, GXD provides information about expression profiles in different mouse strains and mutants. Participation in the Gene Ontology (GO) project classifies genes and gene products with regard to molecular functions, biological processes, and cellular components. Integration with other Mouse Genome Informatics (MGI) databases places the gene expression information in the context of mouse genetic, genomic and phenotypic information. The integration of these types of information enables valuable insights into the molecular biology that underlies development and disease. The utility of GXD has been improved by the daily addition of new data and through the implementation of new query and display features. These improvements make it easier for users to interrogate and visualize expression data in the context of their specific needs. GXD is accessible through the MGI website at http://www.informatics.jax.org/ or directly at http://www. informatics.jax.org/menus/expression_menu.shtml.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Ratones/genética , Animales , Genoma , Genómica , Almacenamiento y Recuperación de la Información , Internet , Ratones/clasificación
13.
J Biomed Semantics ; 5: 21, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25009735

RESUMEN

BACKGROUND: Elucidating disease and developmental dysfunction requires understanding variation in phenotype. Single-species model organism anatomy ontologies (ssAOs) have been established to represent this variation. Multi-species anatomy ontologies (msAOs; vertebrate skeletal, vertebrate homologous, teleost, amphibian AOs) have been developed to represent 'natural' phenotypic variation across species. Our aim has been to integrate ssAOs and msAOs for various purposes, including establishing links between phenotypic variation and candidate genes. RESULTS: Previously, msAOs contained a mixture of unique and overlapping content. This hampered integration and coordination due to the need to maintain cross-references or inter-ontology equivalence axioms to the ssAOs, or to perform large-scale obsolescence and modular import. Here we present the unification of anatomy ontologies into Uberon, a single ontology resource that enables interoperability among disparate data and research groups. As a consequence, independent development of TAO, VSAO, AAO, and vHOG has been discontinued. CONCLUSIONS: The newly broadened Uberon ontology is a unified cross-taxon resource for metazoans (animals) that has been substantially expanded to include a broad diversity of vertebrate anatomical structures, permitting reasoning across anatomical variation in extinct and extant taxa. Uberon is a core resource that supports single- and cross-species queries for candidate genes using annotations for phenotypes from the systematics, biodiversity, medical, and model organism communities, while also providing entities for logical definitions in the Cell and Gene Ontologies. THE ONTOLOGY RELEASE FILES ASSOCIATED WITH THE ONTOLOGY MERGE DESCRIBED IN THIS MANUSCRIPT ARE AVAILABLE AT: http://purl.obolibrary.org/obo/uberon/releases/2013-02-21/ CURRENT ONTOLOGY RELEASE FILES ARE AVAILABLE ALWAYS AVAILABLE AT: http://purl.obolibrary.org/obo/uberon/releases/

14.
J Biomed Semantics ; 4(1): 15, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23972281

RESUMEN

BACKGROUND: The Edinburgh Mouse Atlas Project (EMAP) ontology of mouse developmental anatomy provides a standard nomenclature for describing normal and mutant mouse embryo anatomy. The ontology forms the core of the EMAP atlas and is used for annotating gene expression data by the mouse Gene Expression Database (GXD), Edinburgh Mouse Atlas of Gene Expression (EMAGE) and other database resources. FINDINGS: The original EMAP ontology listed anatomical entities for each developmental stage separately, presented as uniparental graphs organized as a strict partonomy. An "abstract" (i.e. non-stage-specific) representation of mouse developmental anatomy has since been developed. In this version (EMAPA) all instances for a given anatomical entity are presented as a single term, together with the first and last stage at which it is considered to be present. Timed-component anatomies are now derived using staging information in the "primary" non-timed version. Anatomical entities are presented as a directed acyclic graph enabling multiple parental relationships. Subsumption classification as well as partonomic and other types of relationships can now be represented. Most concept names are unique, with compound names constructed using standardized nomenclature conventions, and alternative names associated as synonyms. CONCLUSIONS: The ontology has been extended and refined in a collaborative effort between EMAP and GXD, with additional input from others. Efforts are also underway to improve the revision process with regards to updating and editorial control. The revised EMAPA ontology is freely available from the OBO Foundry resource, with descriptive information and other documentation presented in associated Wiki pages (http://www.obofoundry.org/wiki/index.php/EMAPA:Main_Page).

15.
Database (Oxford) ; 2012: bar066, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22434834

RESUMEN

The overall objective of the Mouse-Human Anatomy Project (MHAP) was to facilitate the mapping and harmonization of anatomical terms used for mouse and human models by Mouse Genome Informatics (MGI) and the National Cancer Institute (NCI). The anatomy resources designated for this study were the Adult Mouse Anatomy (MA) ontology and the set of anatomy concepts contained in the NCI Thesaurus (NCIt). Several methods and software tools were identified and evaluated, then used to conduct an in-depth comparative analysis of the anatomy ontologies. Matches between mouse and human anatomy terms were determined and validated, resulting in a highly curated set of mappings between the two ontologies that has been used by other resources. These mappings will enable linking of data from mouse and human. As the anatomy ontologies have been expanded and refined, the mappings have been updated accordingly. Insights are presented into the overall process of comparing and mapping between ontologies, which may prove useful for further comparative analyses and ontology mapping efforts, especially those involving anatomy ontologies. Finally, issues concerning further development of the ontologies, updates to the mapping files, and possible additional applications and significance were considered. DATABASE URL: http://obofoundry.org/cgi-bin/detail.cgi?id=ma2ncit.


Asunto(s)
Anatomía/métodos , Bases de Datos Factuales , Vocabulario Controlado , Animales , Genómica , Humanos , Ratones , Reproducibilidad de los Resultados
16.
AMIA Annu Symp Proc ; : 61-5, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16779002

RESUMEN

This paper reports on the alignment between mouse and human anatomies, a critical resource for comparative science as diseases in mice are used as mod-els of human disease. The two ontologies under investigation are the NCI Thesaurus (human anatomy) and the Adult Mouse Anatomical Dictionary, each comprising about 2500 anatomical concepts. This study compares two approaches to aligning ontologies. One is fully automatic, based on a combination of lexical and structural similarity; the other is manual. The resulting mappings were evaluated by an expert. 715 and 781 mappings were identified by each method respectively, of which 639 are common to both and all valid. The applications of the map-ping are discussed from the perspective of biology and from that of ontology.


Asunto(s)
Anatomía/clasificación , Vocabulario Controlado , Animales , Diccionarios como Asunto , Humanos , Ratones , Semántica
17.
Genome Biol ; 6(3): R29, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15774030

RESUMEN

We have developed an ontology to provide standardized nomenclature for anatomical terms in the postnatal mouse. The Adult Mouse Anatomical Dictionary is structured as a directed acyclic graph, and is organized hierarchically both spatially and functionally. The ontology will be used to annotate and integrate different types of data pertinent to anatomy, such as gene expression patterns and phenotype information, which will contribute to an integrated description of biological phenomena in the mouse.


Asunto(s)
Diccionarios como Asunto , Ratones/anatomía & histología , Programas Informáticos , Terminología como Asunto , Animales , Clasificación , Vocabulario Controlado
18.
Comp Funct Genomics ; 5(6-7): 521-7, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-18629134

RESUMEN

A great deal of data in functional genomics studies needs to be annotated with low-resolution anatomical terms. For example, gene expression assays based on manually dissected samples (microarray, SAGE, etc.) need high-level anatomical terms to describe sample origin. First-pass annotation in high-throughput assays (e.g. large-scale in situ gene expression screens or phenotype screens) and bibliographic applications, such as selection of keywords, would also benefit from a minimum set of standard anatomical terms. Although only simple terms are required, the researcher faces serious practical problems of inconsistency and confusion, given the different aims and the range of complexity of existing anatomy ontologies. A Standards and Ontologies for Functional Genomics (SOFG) group therefore initiated discussions between several of the major anatomical ontologies for higher vertebrates. As we report here, one result of these discussions is a simple, accessible, controlled vocabulary of gross anatomical terms, the SOFG Anatomy Entry List (SAEL). The SAEL is available from http://www.sofg.org and is intended as a resource for biologists, curators, bioinformaticians and developers of software supporting functional genomics. It can be used directly for annotation in the contexts described above. Importantly, each term is linked to the corresponding term in each of the major anatomy ontologies. Where the simple list does not provide enough detail or sophistication, therefore, the researcher can use the SAEL to choose the appropriate ontology and move directly to the relevant term as an entry point. The SAEL links will also be used to support computational access to the respective ontologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA