Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Diabetes ; 69(9): 1936-1947, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32540877

RESUMEN

The microtubule cytoskeleton of pancreatic islet ß-cells regulates glucose-stimulated insulin secretion (GSIS). We have reported that the microtubule-mediated movement of insulin vesicles away from the plasma membrane limits insulin secretion. High glucose-induced remodeling of microtubule network facilitates robust GSIS. This remodeling involves disassembly of old microtubules and nucleation of new microtubules. Here, we examine the mechanisms whereby glucose stimulation decreases microtubule lifetimes in ß-cells. Using real-time imaging of photoconverted microtubules, we demonstrate that high levels of glucose induce rapid microtubule disassembly preferentially in the periphery of individual ß-cells, and this process is mediated by the phosphorylation of microtubule-associated protein tau. Specifically, high glucose induces tau hyper-phosphorylation via glucose-responsive kinases GSK3, PKA, PKC, and CDK5. This causes dissociation of tau from and subsequent destabilization of microtubules. Consequently, tau knockdown in mouse islet ß-cells facilitates microtubule turnover, causing increased basal insulin secretion, depleting insulin vesicles from the cytoplasm, and impairing GSIS. More importantly, tau knockdown uncouples microtubule destabilization from glucose stimulation. These findings suggest that tau suppresses peripheral microtubules turning over to restrict insulin oversecretion in basal conditions and preserve the insulin pool that can be released following stimulation; high glucose promotes tau phosphorylation to enhance microtubule disassembly to acutely enhance GSIS.


Asunto(s)
Glucosa/farmacología , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Proteínas tau/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Células Secretoras de Insulina/metabolismo , Ratones , Microtúbulos/metabolismo , Fosforilación/efectos de los fármacos , Proteína Quinasa C
2.
Neuron ; 42(5): 773-87, 2004 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-15182717

RESUMEN

Molecular and cellular mechanisms for memory consolidation in the cortex are poorly known. To study the relationships between synaptic structure and function in the cortex and consolidation of long-term memory, we have generated transgenic mice in which catalytic activity of PAK, a critical regulator of actin remodeling, is inhibited in the postnatal forebrain. Cortical neurons in these mice displayed fewer dendritic spines and an increased proportion of larger synapses compared to wild-type controls. These alterations in basal synaptic morphology correlated with enhanced mean synaptic strength and impaired bidirectional synaptic modifiability (enhanced LTP and reduced LTD) in the cortex. By contrast, spine morphology and synaptic plasticity were normal in the hippocampus of these mice. Importantly, these mice exhibited specific deficits in the consolidation phase of hippocampus-dependent memory. Thus, our results provide evidence for critical relationships between synaptic morphology and bidirectional modifiability of synaptic strength in the cortex and consolidation of long-term memory.


Asunto(s)
Trastornos de la Memoria/patología , Prosencéfalo/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Sinapsis/patología , Valina/análogos & derivados , Análisis de Varianza , Animales , Animales Recién Nacidos , Conducta Animal , Northern Blotting/métodos , Western Blotting/métodos , Dendritas/patología , Interacciones Farmacológicas , Activación Enzimática , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Glicina/farmacología , Hipocampo/patología , Hipocampo/fisiopatología , Hipocampo/ultraestructura , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica/métodos , Modelos Neurológicos , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Proteínas de Neurofilamentos/metabolismo , Neuronas/clasificación , Neuronas/patología , Neuronas/ultraestructura , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ratas , Retención en Psicología/efectos de los fármacos , Tinción con Nitrato de Plata/métodos , Conducta Espacial/fisiología , Sinaptofisina/metabolismo , Factores de Tiempo , Valina/farmacología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Quinasas p21 Activadas
3.
PLoS One ; 6(10): e26459, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22039492

RESUMEN

Pharmacodynamic (PD) biomarkers are an increasingly valuable tool for decision-making and prioritization of lead compounds during preclinical and clinical studies as they link drug-target inhibition in cells with biological activity. They are of particular importance for novel, first-in-class mechanisms, where the ability of a targeted therapeutic to impact disease outcome is often unknown. By definition, proximal PD biomarkers aim to measure the interaction of a drug with its biological target. For kinase drug discovery, protein substrate phosphorylation sites represent candidate PD biomarkers. However, substrate phosphorylation is often controlled by input from multiple converging pathways complicating assessment of how potently a small molecule drug hits its target based on substrate phoshorylation measurements alone. Here, we report the use of quantitative, differential mass-spectrometry to identify and monitor novel drug-regulated phosphorylation sites on target kinases. Autophosphorylation sites constitute clinically validated biomarkers for select protein tyrosine kinase inhibitors. The present study extends this principle to phosphorylation sites in serine/threonine kinases looking beyond the T-loop autophosphorylation site. Specifically, for the 3'-phosphoinositide-dependent protein kinase 1 (PDK1), two phospho-residues p-PDK1(Ser410) and p-PDK1(Thr513) are modulated by small-molecule PDK1 inhibitors, and their degree of dephosphorylation correlates with inhibitor potency. We note that classical, ATP-competitive PDK1 inhibitors do not modulate PDK1 T-loop phosphorylation (p-PDK1(Ser241)), highlighting the value of an unbiased approach to identify drug target-regulated phosphorylation sites as these are complementary to pathway PD biomarkers. Finally, we extend our analysis to another protein Ser/Thr kinase, highlighting a broader utility of our approach for identification of kinase drug-target engagement biomarkers.


Asunto(s)
Biomarcadores/metabolismo , Fosfotransferasas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Secuencia de Aminoácidos , Biocatálisis , Línea Celular , Humanos , Datos de Secuencia Molecular , Fosforilación , Fosfotransferasas/metabolismo , Espectrometría de Masas en Tándem
4.
Proc Natl Acad Sci U S A ; 104(27): 11489-94, 2007 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-17592139

RESUMEN

Fragile X syndrome (FXS), the most commonly inherited form of mental retardation and autism, is caused by transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene and consequent loss of the fragile X mental retardation protein. Despite growing evidence suggesting a role of specific receptors and biochemical pathways in FXS pathogenesis, an effective therapeutic method has not been developed. Here, we report that abnormalities in FMR1 knockout (KO) mice, an animal model of FXS, are ameliorated, at least partially, at both cellular and behavioral levels, by an inhibition of the catalytic activity of p21-activated kinase (PAK), a kinase known to play a critical role in actin polymerization and dendritic spine morphogenesis. Greater spine density and elongated spines in the cortex, morphological synaptic abnormalities commonly observed in FXS, are at least partially restored by postnatal expression of a dominant negative (dn) PAK transgene in the forebrain. Likewise, the deficit in cortical long-term potentiation observed in FMR1 KO mice is fully restored by the dnPAK transgene. Several behavioral abnormalities associated with FMR1 KO mice, including those in locomotor activity, stereotypy, anxiety, and trace fear conditioning are also ameliorated, partially or fully, by the dnPAK transgene. Finally, we demonstrate a direct interaction between PAK and fragile X mental retardation protein in vitro. Overall, our results demonstrate the genetic rescue of phenotypes in a FXS mouse model and suggest that the PAK signaling pathway, including the catalytic activity of PAK, is a novel intervention site for development of an FXS and autism therapy.


Asunto(s)
Síndrome del Cromosoma X Frágil/enzimología , Síndrome del Cromosoma X Frágil/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Conducta Animal/fisiología , Espinas Dendríticas/enzimología , Espinas Dendríticas/genética , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/terapia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Quinasas p21 Activadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA