Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(7): 5005-5010, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38329236

RESUMEN

Radical hydrofunctionalizations of electronically unbiased dienes are challenging to render regioselective, because the products are nearly identical in energy. Here, we report two engineered FMN-dependent "ene"-reductases (EREDs) that catalyze regiodivergent hydroalkylations of cyclic and linear dienes. While previous studies focused exclusively on the stereoselectivity of alkene hydroalkylation, this work highlights that EREDs can control the regioselectivity of hydrogen atom transfer, providing a method for selectively preparing constitutional isomers that would be challenging to prepare using traditional synthetic methods. Engineering the ERED from Gluconabacter sp. (GluER) furnished a variant that favors the γ,δ-unsaturated ketone, while an engineered variant from a commercial ERED panel favors the δ,ε-unsaturated ketone. The effect of beneficial mutations has been investigated using substrate docking studies and the mechanism probed by isotope labeling experiments. A variety of α-bromo ketones can be coupled with cyclic and linear dienes. These interesting building blocks can also be further modified to generate difficult-to-access heterocyclic compounds.


Asunto(s)
Oxidorreductasas , Polienos , Biocatálisis , Oxidorreductasas/química , Catálisis , Isomerismo , Cetonas/química
2.
Drug Metab Dispos ; 52(3): 242-251, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38176735

RESUMEN

Detailed structural characterization of small molecule metabolites is desirable during all stages of drug development, and often relies on the synthesis of metabolite standards. However, introducing structural changes into already complex, highly functionalized small molecules both regio- and stereo-selectively can be challenging using purely chemical approaches, introducing delays into the drug pipeline. An alternative is to use the cytochrome P450 enzymes (P450s) that produce the metabolites in vivo, taking advantage of the enzyme's inherently chiral active site to achieve regio- and stereoselectivity. Importantly, biotransformations are more sustainable: they proceed under mild conditions and avoid environmentally damaging solvents and transition metal catalysts. Recombinant enzymes avoid the need to use animal liver microsomes. However, native enzymes must be stabilized to work for extended periods or at elevated temperatures, and stabilizing mutations can alter catalytic activity. Here we assessed a set of novel, thermostable P450s in bacterial membranes, a format analogous to liver microsomes, for their ability to metabolize drugs through various pathways and compared them to human liver microsomes. Collectively, the thermostable P450s could replicate the metabolic pathways seen with human liver microsomes, including bioactivation to protein-reactive intermediates. Novel metabolites were found, suggesting the possibility of obtaining metabolites not produced by human or rodent liver microsomes. Importantly, no alteration in assay conditions from standard protocols for microsomal incubations was necessary. Thus, such bacterial membranes represent an analogous metabolite generation system to liver microsomes in terms of metabolites produced and ease of use, but which provides access to more diversity of metabolite structures. SIGNIFICANCE STATEMENT: In drug development it is often chemically challenging, to synthesize authentic metabolites of drug candidates for structural identification and evaluation of activity and safety. Biosynthesis using microsomes or recombinant human enzymes is confounded by the instability of the enzymes. Here we show that thermostable ancestral cytochrome P450 enzymes derived from P450 families responsible for human drug metabolism offer advantages over the native human forms in being more robust and over microbial enzymes in faithfully reflecting human drug metabolism.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Microsomas Hepáticos , Animales , Humanos , Microsomas Hepáticos/metabolismo , Biocatálisis , Sistema Enzimático del Citocromo P-450/metabolismo , Biotransformación , Redes y Vías Metabólicas
3.
Angew Chem Int Ed Engl ; 63(21): e202402316, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38494442

RESUMEN

In the ever-growing demand for sustainable ways to produce high-value small molecules, biocatalysis has come to the forefront of greener routes to these chemicals. As such, the need to constantly find and optimise suitable biocatalysts for specific transformations has never been greater. Metagenome mining has been shown to rapidly expand the toolkit of promiscuous enzymes needed for new transformations, without requiring protein engineering steps. If protein engineering is needed, the metagenomic candidate can often provide a better starting point for engineering than a previously discovered enzyme on the open database or from literature, for instance. In this review, we highlight where metagenomics has made substantial impact on the area of biocatalysis in recent years. We review the discovery of enzymes in previously unexplored or 'hidden' sequence space, leading to the characterisation of enzymes with enhanced properties that originate from natural selection pressures in native environments.


Asunto(s)
Biocatálisis , Metagenómica , Enzimas/metabolismo , Enzimas/química , Enzimas/genética , Ingeniería de Proteínas
4.
Angew Chem Int Ed Engl ; 63(18): e202314869, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38163289

RESUMEN

Selective, one-step C-H activation of fatty acids from biomass is an attractive concept in sustainable chemistry. Biocatalysis has shown promise for generating high-value hydroxy acids, but to date enzyme discovery has relied on laborious screening and produced limited hits, which predominantly oxidise the subterminal positions of fatty acids. Herein we show that ancestral sequence reconstruction (ASR) is an effective tool to explore the sequence-activity landscape of a family of multidomain, self-sufficient P450 monooxygenases. We resurrected 11 catalytically active CYP116B ancestors, each with a unique regioselectivity fingerprint that varied from subterminal in the older ancestors to mid-chain in the lineage leading to the extant, P450-TT. In lineages leading to extant enzymes in thermophiles, thermostability increased from ancestral to extant forms, as expected if thermophily had arisen de novo. Our studies show that ASR can be applied to multidomain enzymes to develop active, self-sufficient monooxygenases as regioselective biocatalysts for fatty acid hydroxylation.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Ácidos Grasos , Ácidos Grasos/química , Sistema Enzimático del Citocromo P-450/metabolismo , Hidroxilación
5.
J Am Chem Soc ; 145(40): 22041-22046, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37782882

RESUMEN

Novel building blocks are in constant demand during the search for innovative bioactive small molecule therapeutics by enabling the construction of structure-activity-property-toxicology relationships. Complex chiral molecules containing multiple stereocenters are an important component in compound library expansion but can be difficult to access by traditional organic synthesis. Herein, we report a biocatalytic process to access a specific diastereomer of a chiral amine building block used in drug discovery. A reductive aminase (RedAm) was engineered following a structure-guided mutagenesis strategy to produce the desired isomer. The engineered RedAm (IR-09 W204R) was able to generate the (S,S,S)-isomer 3 in 45% conversion and 95% ee from the racemic ketone 2. Subsequent palladium-catalyzed deallylation of 3 yielded the target primary amine 4 in a 73% yield. This engineered biocatalyst was used at preparative scale and represents a potential starting point for further engineering and process development.


Asunto(s)
Aminas , Diseño de Fármacos , Biocatálisis , Estereoisomerismo
6.
Chembiochem ; 24(14): e202300382, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37305956

RESUMEN

Stereoselective carbon-carbon bond forming reactions are quintessential transformations in organic synthesis. One example is the Diels-Alder reaction, a [4+2] cycloaddition between a conjugated diene and a dienophile to form cyclohexenes. The development of biocatalysts for this reaction is paramount for unlocking sustainable routes to a plethora of important molecules. To obtain a comprehensive understanding of naturally evolved [4+2] cyclases, and to identify hitherto uncharacterised biocatalysts for this reaction, we constructed a library comprising forty-five enzymes with reported or predicted [4+2] cycloaddition activity. Thirty-one library members were successfully produced in recombinant form. In vitro assays employing a synthetic substrate incorporating a diene and a dienophile revealed broad-ranging cycloaddition activity amongst these polypeptides. The hypothetical protein Cyc15 was found to catalyse an intramolecular cycloaddition to generate a novel spirotetronate. The crystal structure of this enzyme, along with docking studies, establishes the basis for stereoselectivity in Cyc15, as compared to other spirotetronate cyclases.


Asunto(s)
Carbono , Proteínas , Catálisis , Reacción de Cicloadición , Técnicas de Química Sintética
7.
Bioconjug Chem ; 34(10): 1835-1850, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37788373

RESUMEN

Antibody-drug conjugates consist of potent small-molecule payloads linked to a targeting antibody. Payloads must possess a viable functional group by which a linker for conjugation can be attached. Linker-attachment options remain limited for the connection to payloads via hydroxyl groups. A releasing group based on 2-aminopyridine was developed to enable stable attachment of para-aminobenzyl carbamate (PABC) linkers to the C21-hydroxyl group of budesonide, a glucocorticoid receptor agonist. Payload release involves a cascade of two self-immolative events that are initiated by the protease-mediated cleavage of the dipeptide-PABC bond. Budesonide release rates were determined for a series of payload-linker intermediates in buffered solution at pH 7.4 and 5.4, leading to the identification of 2-aminopyridine as the preferred releasing group. Addition of a poly(ethylene glycol) group improved linker hydrophilicity, thereby providing CD19-budesonide ADCs with suitable properties. ADC23 demonstrated targeted delivery of budesonide to CD19-expressing cells and inhibited B-cell activation in mice.


Asunto(s)
Inmunoconjugados , Ratones , Animales , Inmunoconjugados/química , Carbamatos/química , Budesonida
8.
Angew Chem Int Ed Engl ; 62(51): e202313912, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37917964

RESUMEN

Enzyme-catalyzed late-stage functionalization (LSF), such as methylation of drug molecules and lead structures, enables direct access to more potent active pharmaceutical ingredients (API). S-adenosyl-l-methionine-dependent methyltransferases (MTs) can play a key role in the development of new APIs, as they catalyze the chemo- and regioselective methylation of O-, N-, S- and C-atoms, being superior to traditional chemical routes. To identify suitable MTs, we developed a continuous fluorescence-based, high-throughput assay for SAM-dependent methyltransferases, which facilitates screening using E. coli cell lysates. This assay involves two enzymatic steps for the conversion of S-adenosyl-l-homocysteine into H2 S to result in a selective fluorescence readout via reduction of an azidocoumarin sulfide probe. Investigation of two O-MTs and an N-MT confirmed that this assay is suitable for the determination of methyltransferase activity in E. coli cell lysates.


Asunto(s)
Escherichia coli , Metiltransferasas , Escherichia coli/metabolismo , Metiltransferasas/metabolismo , Metilación , S-Adenosilmetionina/química , Metionina
9.
Angew Chem Int Ed Engl ; 62(3): e202213053, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36314667

RESUMEN

Abyssomicin C and its atropisomer are potent inhibitors of bacterial folate metabolism. They possess complex polycyclic structures, and their biosynthesis has been shown to involve several unusual enzymatic transformations. Using a combination of synthesis and in vitro assays we reveal that AbyV, a cytochrome P450 enzyme from the aby gene cluster, catalyses a key late-stage epoxidation required for the installation of the characteristic ether-bridged core of abyssomicin C. The X-ray crystal structure of AbyV has been determined, which in combination with molecular dynamics simulations provides a structural framework for our functional data. This work demonstrates the power of combining selective carbon-13 labelling with NMR spectroscopy as a sensitive tool to interrogate enzyme-catalysed reactions in vitro with no need for purification.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Sistema Enzimático del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Simulación de Dinámica Molecular , Metabolismo Secundario
10.
Br J Cancer ; 126(7): 1027-1036, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34887522

RESUMEN

PURPOSE: PARP inhibitor resistance may be overcome by combinatorial strategies with agents that disrupt homologous recombination repair (HRR). Multiple HRR pathway components are HSP90 clients, so that HSP90 inhibition leads to abrogation of HRR and sensitisation to PARP inhibition. We performed in vivo preclinical studies of the HSP90 inhibitor onalespib with olaparib and conducted a Phase 1 combination study. PATIENTS AND METHODS: Tolerability and efficacy studies were performed in patient-derived xenograft(PDX) models of ovarian cancer. Clinical safety, tolerability, steady-state pharmacokinetics and preliminary efficacy of olaparib and onalespib were evaluated using a standard 3 + 3 dose-escalation design. RESULTS: Olaparib/onalespib exhibited anti-tumour activity against BRCA1-mutated PDX models with acquired PARPi resistance and PDX models with RB-pathway alterations(CDKN2A loss and CCNE1 overexpression). Phase 1 evaluation revealed that dose levels up to olaparib 300 mg/onalespib 40 mg and olaparib 200 mg/onalespib 80 mg were safe without dose-limiting toxicities. Coadministration of olaparib and onalespib did not appear to affect the steady-state pharmacokinetics of either agent. There were no objective responses, but disease stabilisation ≥24 weeks was observed in 7/22 (32%) evaluable patients including patients with BRCA-mutated ovarian cancers and acquired PARPi resistance and patients with tumours harbouring RB-pathway alterations. CONCLUSIONS: Combining onalespib and olaparib was feasible and demonstrated preliminary evidence of anti-tumour activity.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Antineoplásicos/uso terapéutico , Carcinoma Epitelial de Ovario , Proteínas HSP90 de Choque Térmico , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Ftalazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
11.
J Labelled Comp Radiopharm ; 65(4): 86-100, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34997781

RESUMEN

Cyclopropanes are commonly employed structural moieties in drug design since their incorporation is often associated with increased target affinity, improved metabolic stability, and increased rigidity to access bioactive conformations. Robust chemical cyclopropanation procedures have been developed which proceed with high yield and broad substrate scope, and have been applied to labeled substrates. Recently, engineered enzymes have been shown to perform cyclopropanations with remarkable diastereoselectivity and enantioselectivity, but this biocatalytic approach has not been applied to labeled substrates to date. In this study, the use of enzyme catalysis for the synthesis of labeled cyclopropanes was investigated. Two readily available enzymes, a modified CYP450 enzyme and a modified Aeropyrum pernix protoglobin, were investigated for the cyclopropanation of a variety of substituted styrenes. For this biocatalytic transformation, the enzymes required the use of ethyl diazoacetate. Due to the highly energetic nature of this molecule, alternatives were investigated. The final optimized cyclopropanation was successfully demonstrated using n-hexyl diazoacetate, resulting in moderate to high enantiomeric excess. The optimized procedure was used to generate labeled cyclopropanes from 13 C-glycine, forming all four labeled stereoisomers of phosphodiesterase type-IV inhibitor, MK0952. These reactions provide a convenient and effective biocatalytic route to stereoselective 13 C-labeled cyclopropanes and serve as a proof-of-concept for generating stereoselective labeled cyclopropanes.


Asunto(s)
Ciclopropanos , Isótopos , Biocatálisis , Catálisis , Ciclopropanos/química , Ciclopropanos/metabolismo , Estructura Molecular , Estereoisomerismo
12.
Sensors (Basel) ; 23(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36616671

RESUMEN

Smart manufacturing is a vision and major driver for change in today's industry. The goal of smart manufacturing is to optimize manufacturing processes through constantly monitoring, controlling, and adapting processes towards more efficient and personalised manufacturing. This requires and relies on technologies for connected machines incorporating a variety of computation, sensing, actuation, and machine to machine communications modalities. As such, understanding the change towards smart manufacturing requires knowledge of the enabling technologies, their applications in real world scenarios and the communication protocols and their performance to meet application requirements. Particularly, wireless communication is becoming an integral part of modern smart manufacturing and is expected to play an important role in achieving the goals of smart manufacturing. This paper presents an extensive review of wireless communication protocols currently applied in manufacturing environments and provides a comprehensive review of the associated use cases whilst defining their expected impact on the future of smart manufacturing. Based on the review, we point out a number of open challenges and directions for future research in wireless communication technologies for smart manufacturing.


Asunto(s)
Comercio , Industrias , Comunicación , Conocimiento , Tecnología
13.
Angew Chem Int Ed Engl ; 61(39): e202207831, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35916874

RESUMEN

H2 O2 -driven enzymes are of great interest for industrial biotransformations. Herein, we show for the first time that oxalate oxidase (OXO) is an efficient in situ source of H2 O2 for one of these biocatalysts, which is known as unspecific peroxygenase (UPO). OXO is reasonably robust, produces only CO2 as a by-product and uses oxalate as a cheap sacrificial electron donor. UPO has significant potential as an industrial catalyst for selective C-H oxyfunctionalisations, as we confirm herein by testing a diverse drug panel using miniaturised high-throughput assays and mass spectrometry. 33 out of 64 drugs were converted in 5 µL-scale reactions by the UPO with OXO (conversion >70 % for 11 drugs). Furthermore, oxidation of the drug tolmetin was achieved on a 50 mg scale (TONUPO 25 664) with 84 % yield, which was further improved via enzyme immobilization. This one-pot approach ensures adequate H2 O2 levels, enabling rapid access to industrially relevant molecules that are difficult to obtain by other routes.


Asunto(s)
Tolmetina , Dióxido de Carbono , Oxigenasas de Función Mixta , Oxalatos , Oxidorreductasas
14.
Angew Chem Int Ed Engl ; 60(31): 16824-16855, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-33453143

RESUMEN

Enzyme catalysis is gaining increasing importance in synthetic chemistry. Nowadays, the growing number of biocatalysts accessible by means of bioinformatics and enzyme engineering opens up an immense variety of selective reactions. Biocatalysis especially provides excellent opportunities for late-stage modification often superior to conventional de novo synthesis. Enzymes have proven to be useful for direct introduction of functional groups into complex scaffolds, as well as for rapid diversification of compound libraries. Particularly important and highly topical are enzyme-catalysed oxyfunctionalisations, halogenations, methylations, reductions, and amide bond formations due to the high prevalence of these motifs in pharmaceuticals. This Review gives an overview of the strengths and limitations of enzymatic late-stage modifications using native and engineered enzymes in synthesis while focusing on important examples in drug development.


Asunto(s)
Amidas/metabolismo , Enzimas/metabolismo , Amidas/química , Biocatálisis
15.
Regul Toxicol Pharmacol ; 110: 104524, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31734179

RESUMEN

Regulatory Guidance documents ICH Q3A (R2) and ICH Q3B (R2) state that "impurities that are also significant metabolites present in animal and/or human studies are generally considered qualified". However, no guidance is provided regarding data requirements for qualification, nor is a definition of the term "significant metabolite" provided. An opportunity is provided to define those categories and potentially avoid separate toxicity studies to qualify impurities. This can reduce cost, animal use and time, and avoid delays in drug development progression. If the concentration or amount of a metabolite, in animals or human, is similar to that of the known, structurally identical impurity (arising from the administered test material), the qualification of the impurity on the grounds of it also being a metabolite is justified. We propose two complementary approaches to support conclusions to this effect: 1) demonstrate that the impurity is formed by metabolism in animals and/or man, based preferably on plasma exposures or, alternatively, amounts excreted in urine, and, where appropriate, 2) show that animal exposure to (or amount of) the impurity/metabolite is equal or greater in animals than in humans. An important factor of both assessments is the maximum theoretical concentration (or amount) (MTC or MTA) of the impurity/metabolite achievable from the administered dose and recommendations on the estimation of the MTC and MTA are presented.


Asunto(s)
Contaminación de Medicamentos , Preparaciones Farmacéuticas/metabolismo , Animales , Biotransformación , Humanos , Pruebas de Toxicidad
16.
Drug Metab Dispos ; 47(11): 1247-1256, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31492694

RESUMEN

AZD1979 [(3-(4-(2-oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone] is a melanin-concentrating hormone receptor 1 antagonist designed for the treatment of obesity. In this study, metabolite profiles of AZD1979 in human hepatocytes revealed a series of glutathione-related metabolites, including the glutathionyl, cysteinyl, cysteinylglycinyl, and mercapturic acid conjugates. The formation of these metabolites was not inhibited by coincubation with the cytochrome P450 (P450) inhibitor 1-aminobenzotriazole. In efforts to identify the mechanistic features of this pathway, investigations were performed to characterize the structure of the glutathionyl conjugate M12 of AZD1979 and to identify the enzyme system catalyzing its formation. Studies with various human liver subcellular fractions established that the formation of M12 was NAD(P)H-independent and proceeded in cytosol and S9 fractions but not in microsomal or mitochondrial fractions. The formation of M12 was inhibited by ethacrynic acid, an inhibitor of glutathione S-transferases (GSTs). Several human recombinant GSTs, including GSTA1, A2-2, M1a, M2-2, T1-1, and GST from human placenta, were incubated with AZD1979. All GSTs tested catalyzed the formation of M12, with GSTA2-2 being the most efficient. Metabolite M12 was purified from rat liver S9 incubations and its structure elucidated by NMR. These results establish that M12 is the product of the GST-catalyzed glutathione attack on the carbon atom α to the nitrogen atom of the strained spiro-azetidinyl moiety to give, after ring opening, the corresponding amino-thioether conjugate product, a direct conjugation pathway that occurs without the prior substrate bioactivation by P450. SIGNIFICANCE STATEMENT: The investigated compound, AZD1979, contains a 6-substituted-2-oxa-6-azaspiro[3.3]heptanyl derivative that is an example of strained heterocycles, including spiro-fused ring systems, that are widely used in synthetic organic chemistry. An unusual azetidinyl ring-opening reaction involving a nucleophilic attack by glutathione, which does not involve prior cytochrome P450-catalyzed bioactivation of the substrate and which is catalyzed by glutathione transferases, is reported. We propose a mechanism involving the protonated cyclic aminyl intermediate that undergoes nucleophilic attack by glutathione thiolate anion in this reaction, catalyzed by glutathione transferases.


Asunto(s)
Azetidinas/metabolismo , Glutatión Transferasa/fisiología , Oxadiazoles/metabolismo , Activación Metabólica , Catálisis , Cromatografía Líquida de Alta Presión , Glutatión/metabolismo , Humanos , Hígado/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas en Tándem
17.
Angew Chem Int Ed Engl ; 58(52): 19096-19102, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31609503

RESUMEN

The late-stage functionalization (LSF) of peptides represents a valuable strategy for the design of potent peptide pharmaceuticals by enabling rapid exploration of chemical diversity and offering novel opportunities for peptide conjugation. While the C(sp2 )-H activation of tryptophan (Trp) is well documented, the resurgence of radical chemistry is opening new avenues for the C-H functionalization of other aromatic side-chains. Herein, we report the first example of LSF at C2 of histidine (His) utilizing a broad scope of aliphatic sulfinate salts as radical precursors. In this work, the exquisite selectivity for histidine functionalization was demonstrated through the alkylation of complex unprotected peptides in aqueous media. Finally, this methodology was extended for the installation of a ketone handle, providing an unprecedented anchor for selective oxime/hydrazone conjugation at histidine.


Asunto(s)
Histidina/química , Péptidos/química , Humanos
18.
Chembiochem ; 19(4): 326-337, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29181885

RESUMEN

The conversion of a series of pharmaceutical compounds was examined with three variants of cytochrome P450BM3 fused to phosphite dehydrogenase (PTDH) to enable cofactor recycling. Conditions for enzyme production were optimized, and the purified PTDH-P450BM3 variants were tested against 32 commercial drugs by using rapid UPLC-MS analysis. The sets of mutations (R47L/F87V/L188Q and R47L/F87V/L188Q/E267V/G415S) improved conversion for all compounds, and a variety of products were detected. Product analysis showed that reaction types included C-hydroxylation, N-oxidation, demethylation, and aromatization. Interestingly, enzymatic aromatization could occur independent of the addition of reducing coenzyme. These results identified new conversions catalyzed by P450BM3 variants and showed that a small set of mutations in the oxygenase domain could broaden both substrate range and reaction type.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , NADPH-Ferrihemoproteína Reductasa/metabolismo , Preparaciones Farmacéuticas/metabolismo , Proteínas Bacterianas/genética , Biocatálisis , Cromatografía Líquida de Alta Presión , Sistema Enzimático del Citocromo P-450/genética , Variación Genética/genética , Espectrometría de Masas , Estructura Molecular , Mutación , NADH NADPH Oxidorreductasas/genética , NADPH-Ferrihemoproteína Reductasa/genética , Preparaciones Farmacéuticas/análisis
19.
Drug Metab Dispos ; 45(8): 966-973, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28600384

RESUMEN

Oxetanyl building blocks are increasingly used in drug discovery because of the improved drug-like properties they confer on drug candidates, yet little is currently known about their biotransformation. A series of oxetane-containing analogs was studied and we provide the first direct evidence of oxetane hydrolysis by human recombinant microsomal epoxide hydrolase (mEH). Incubations with human liver fractions and hepatocytes were performed with and without inhibitors of cytochrome P450 (P450), mEH and soluble epoxide hydrolase (sEH). Reaction dependence on NADPH was investigated in subcellular fractions. A full kinetic characterization of oxetane hydrolysis is presented, in both human liver microsomes and human recombinant mEH. In human liver fractions and hepatocytes, hydrolysis by mEH was the only oxetane ring-opening metabolic route, with no contribution from sEH or from cytochrome P450-catalyzed oxidation. Minimally altering the structural elements in the immediate vicinity of the oxetane can greatly modulate the efficiency of hydrolytic ring cleavage. In particular, higher pKa in the vicinity of the oxetane and an increased distance between the oxetane ring and the benzylic nitrogen improve reaction rate, which is further enhanced by the presence of methyl groups near or on the oxetane. This work defines oxetanes as the first nonepoxide class of substrates for human mEH, which was previously known to catalyze the hydrolytic ring opening of electrophilic and potentially toxic epoxide-containing drugs, drug metabolites, and exogenous organochemicals. These findings will be of value for the development of biologically active oxetanes and may be exploited for the biocatalytic generation of enantiomerically pure oxetanes and diols.


Asunto(s)
Epóxido Hidrolasas/metabolismo , Éteres Cíclicos/metabolismo , Microsomas Hepáticos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Hepatocitos/metabolismo , Humanos , Cinética , Hígado/metabolismo , Oxidación-Reducción
20.
Appl Microbiol Biotechnol ; 101(6): 2319-2331, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27900443

RESUMEN

To facilitate the wider application of the NADPH-dependent P450BM3, we fused the monooxygenase with a phosphite dehydrogenase (PTDH). The resulting monooxygenase-dehydrogenase fusion enzyme acts as a self-sufficient bifunctional catalyst, accepting phosphite as a cheap electron donor for the regeneration of NADPH.The well-expressed fusion enzyme was purified and analyzed in comparison to the parent enzymes. Using lauric acid as substrate for P450BM3, it was found that the fusion enzyme had similar substrate affinity and hydroxylation selectivity while it displayed a significantly higher activity than the non-fused monooxygenase. Phosphite-driven conversions of lauric acid at restricted NADPH concentrations confirmed multiple turnovers of the cofactor. Interestingly, both the fusion enzyme and the native P450BM3 displayed enzyme concentration dependent activity and the fused enzyme reached optimal activity at a lower enzyme concentration. This suggests that the fusion enzyme has an improved tendency to form functional oligomers.To explore the constructed phosphite-driven P450BM3 as a biocatalyst, conversions of the drug compounds omeprazole and rosiglitazone were performed. PTDH-P450BM3 driven by phosphite was found to be more efficient in terms of total turnover when compared with P450BM3 driven by NADPH. The results suggest that PTDH-P450BM3 is an attractive system for use in biocatalytic and drug metabolism studies.


Asunto(s)
Bacillus megaterium/química , Proteínas Bacterianas/química , Sistema Enzimático del Citocromo P-450/química , NADH NADPH Oxidorreductasas/química , NADPH-Ferrihemoproteína Reductasa/química , NADP/química , Fosfitos/química , Proteínas Recombinantes de Fusión/química , Bacillus megaterium/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Ácidos Láuricos/química , Ácidos Láuricos/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , NADP/metabolismo , NADPH-Ferrihemoproteína Reductasa/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo , Omeprazol/química , Omeprazol/metabolismo , Oxidación-Reducción , Fosfitos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Rosiglitazona , Especificidad por Sustrato , Tiazolidinedionas/química , Tiazolidinedionas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA