Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 128(11): 112503, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35363014

RESUMEN

We have measured the 3d→2p transition x rays of kaonic ^{3}He and ^{4}He atoms using superconducting transition-edge-sensor microcalorimeters with an energy resolution better than 6 eV (FWHM). We determined the energies to be 6224.5±0.4(stat)±0.2(syst) eV and 6463.7±0.3(stat)±0.1(syst) eV, and widths to be 2.5±1.0(stat)±0.4(syst) eV and 1.0±0.6(stat)±0.3(stat) eV, for kaonic ^{3}He and ^{4}He, respectively. These values are nearly 10 times more precise than in previous measurements. Our results exclude the large strong-interaction shifts and widths that are suggested by a coupled-channel approach and agree with calculations based on optical-potential models.

2.
Artículo en Inglés | MEDLINE | ID: mdl-33967568

RESUMEN

Excess heat capacity in a bolometric detector has the consequence of increasing or leading to multiple device time constants. The Mo/Au bilayer transition edge sensor (TES) bolometric detectors initially fabricated for the high resolution mid-infrared spectrometer (HIRMES) exhibited two response thermalization scales, one of which is a few times longer than estimates based upon the properties of the bulk materials employed in the design. The relative contribution of this settling time to the overall time response of the detectors is roughly proportional to the pixel area, which ranges between ~0.3 and 2.6 mm2. Use of laser ablation to remove sections of the silicon membranes comprising the pixels results in a detector response with a smaller contribution from the secondary time constant. Additional information about the nature of this excess heat capacity is gleaned from glancing incidence x-ray diffraction, which reveals the presence of molybdenum silicides near the silicon surface which is a consequence of the bi-layer deposition. Quantitative analysis of the concentration of excess molybdenum, estimated with secondary ion mass spectroscopy, is commensurate to the additional heat capacity needed to explain the anomalous time response of the detectors.

3.
Appl Phys Lett ; 111(24)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29335654

RESUMEN

Key performance characteristics are demonstrated for the microwave SQUID multiplexer (µmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the µmux produces a white, input referred current noise level of [Formula: see text] at -77 dB microwave probe tone power, which is well below expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure [Formula: see text] in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e. phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ~ 100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the µmux as a viable readout technique for future CMB imaging instruments.

4.
Rev Sci Instrum ; 88(5): 053108, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28571411

RESUMEN

We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.

5.
J Low Temp Phys ; 184(1): 389-395, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27325902

RESUMEN

Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers. Here we present the details of two different versions of our TDM system designed to read out X-ray TESs. The first has been field-deployed in two 160-sensor (8 columns × 20 rows) spectrometers and four 240-sensor (8 columns × 30 rows) spectrometers. It has a three-SQUID-stage architecture, switches rows every 320 ns, and has total readout noise of 0.41 µΦ0/√Hz. The second, which is presently under development, has a two-SQUID-stage architecture, switches rows every 160 ns, and has total readout noise of 0.19 µΦ0/√Hz. Both quoted noise values are non-multiplexed and referred to the first-stage SQUID. In a demonstration of this new architecture, a multiplexed 1-column × 32-row array of NIST TESs achieved average energy resolution of 2.55±0.01 eV at 6 keV.

6.
J Low Temp Phys ; 1842015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33087985

RESUMEN

For experiments with high arrival rates, reliable identification of nearly-coincident events can be crucial. For calorimetric measurements to directly measure the neutrino mass such as HOLMES, unidentified pulse pile-ups are expected to be a leading source of experimental error. Although Wiener filtering can be used to recognize pile-up, it suffers errors due to pulse-shape variation from detector nonlinearity, readout dependence on sub-sample arrival times, and stability issues from the ill-posed deconvolution problem of recovering Dirac delta-functions from smooth data. Due to these factors, we have developed a processing method that exploits singular value decomposition to (1) separate single-pulse records from piled-up records in training data and (2) construct a model of single-pulse records that accounts for varying pulse shape with amplitude, arrival time, and baseline level, suitable for detecting nearly-coincident events. We show that the resulting processing advances can reduce the required performance specifications of the detectors and readout system or, equivalently, enable larger sensor arrays and better constraints on the neutrino mass.

7.
Eur Phys J C Part Fields ; 75(3): 112, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25995704

RESUMEN

The European Research Council has recently funded HOLMES, a new experiment to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the decay of [Formula: see text]Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with beta spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress allowed to design a sensitive experiment. HOLMES will deploy a large array of low temperature microcalorimeters with implanted [Formula: see text]Ho nuclei. The resulting mass sensitivity will be as low as 0.4 eV. HOLMES will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. It will also establish the potential of this approach to extend the sensitivity down to 0.1 eV. We outline here the project with its technical challenges and perspectives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA