Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 7(9): 6101-6113, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39121349

RESUMEN

Bacterial infections and biofilm growth are common mishaps associated with medical devices, and they contribute significantly to ill health and mortality. Removal of bacterial deposition from these devices is a major challenge, resulting in an immediate necessity for developing antibacterial coatings on the surfaces of medical implants. In this context, we developed an innovative coating strategy that can operate at low temperatures (80 °C) and preserve the devices' integrity and functionality. An innovative Ag-TiO2 based coating was developed by ion exchange between silver nitrate (AgNO3) and lithium titanate (Li4Ti5O12) on glass substrates for different periods, ranging from 10 to 60 min. The differently coated samples were tested for their antibacterial and antibiofilm efficacy.


Asunto(s)
Antibacterianos , Biopelículas , Materiales Biocompatibles Revestidos , Litio , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Plata , Titanio , Titanio/química , Titanio/farmacología , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Litio/química , Litio/farmacología , Plata/química , Plata/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Propiedades de Superficie , Nanopartículas del Metal/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Nanopartículas/química
2.
J Mater Chem B ; 12(39): 10110, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39351665

RESUMEN

Correction for 'Surface modification of medical grade biomaterials by using a low-temperature-processed dual functional Ag-TiO2 coating for preventing biofilm formation' by Lipi Pradhan et al., J. Mater. Chem. B, 2024, https://doi.org/10.1039/D4TB00701H.

3.
J Mater Chem B ; 12(39): 10093-10109, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39264339

RESUMEN

Biofilm development in medical devices is considered the major virulence component that leads to increased mortality and morbidity among patients. Removing a biofilm once formed is challenging and frequently results in persistent infections. Many current antibiofilm coating strategies involve harsh conditions causing damage to the surface of the medical devices. To address the issue of bacterial attachment in medical devices, we propose a novel antibacterial surface modification approach. In this paper, we developed a novel low-temperature based solution-processed approach to deposit silver nanoparticles (Ag NPs) inside a titanium oxide (TiO2) matrix to obtain a Ag-TiO2 nanoparticle coating. The low temperature (120 °C)-based UV annealed drop cast method is novel and ensures no surface damage to the medical devices. Various medical-grade biomaterials were then coated using Ag-TiO2 to modify the surface of the materials. Several studies were performed to observe the antibacterial and antibiofilm properties of Ag-TiO2-coated medical devices and biomaterials. Moreover, the Ag-TiO2 NPs did not show any skin irritation in rats and showed biocompatibility in the chicken egg model. This study indicates that Ag-TiO2 coating has promising potential for healthcare applications to combat microbial infection and biofilm formation.


Asunto(s)
Antibacterianos , Biopelículas , Materiales Biocompatibles Revestidos , Plata , Propiedades de Superficie , Titanio , Titanio/química , Titanio/farmacología , Biopelículas/efectos de los fármacos , Plata/química , Plata/farmacología , Animales , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Nanopartículas del Metal/química , Ratas , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Pruebas de Sensibilidad Microbiana , Temperatura , Pollos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
4.
ACS Omega ; 8(5): 4616-4626, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36777580

RESUMEN

The contemporary work focuses on embossing the emissive nature of lead halide perovskite materials, specifically Cs4PbBr6 microcrystal powder prepared via single step bulk recrystallization method followed by the solvent evaporation route from gram to kilogram scale. The X-ray diffraction pattern confirms the formation of phase pure Cs4PbBr6 with a goodness of fit value of 1.51 calculated from Rietveld refinement and the fluorophore powder manifesting an intrinsic band gap of 3.76 eV. The experimental yield of 99.4% indicates the absence of any unreacted precursors. The fabricated flexible, free-standing Cs4PbBr6@PMMA film encompassed better moisture stability without undergoing phase transitions for 400 days. The temperature-dependent photoluminescence spectra denote that 51% of the intensity was retained when cooled back to room temperature after heating it till 180 °C. Moisture studies at two extreme humidity conditions also reveal the appreciable stability of the fluorophore film against moisture. The stability studies with respect to UV irradiation substantiate that the film retained its stability even after exposing it continuously to UV radiation for seven days. The outstanding optical properties of these microcrystals, owing to the higher exciton binding energy, make them a promising candidate as excellent fluorophores for color conversion, backlight, and light-emitting applications. The Cs4PbBr6@PMMA film was employed as the top cover of a commercial blue LED, producing a robust green emission which revealed its possible application as a phosphor material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA