Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Scand Cardiovasc J ; 58(1): 2347290, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38733316

RESUMEN

Objectives. The aim of this study was to investigate the expression of long non-coding RNA (lncRNA) brain and reproductive organ-expressed protein (BRE) antisense RNA 1 (BRE-AS1) in patients with acute myocardial infarction (AMI) and its effect on ischemia/reperfusion (I/R)-induced oxidative stress and apoptosis of cardiomyocytes. Methods. Serum BRE-AS1 levels in patients with AMI was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic and prognostic values of BRE-AS1 were evaluated. H9c2 cells were treated with hypoxia/reoxygenation to establish an in vitro myocardial infarction cell model. The levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 were detected by enzyme-linked immunosorbent assay (ELISA). Levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined by commercial kits. Cell counting kit-8 (CCK-8) and flow cytometry were used to evaluate the cell viability and cell apoptosis. Results. The expression of BRE-AS1 in serum of patients with AMI is upregulated, which shows the clinical diagnostic value for AMI. In the I/R injury cell model, the knockout of BRE-AS1 can significantly alleviate the increase in TNF-α, IL-1ß, and IL-6 levels, inhibit the production of LDH and MDA, increase the activities of SOD and GSH-Px, promote the cell viability and suppress cell apoptosis. Conclusions. Abnormally elevated BRE-AS1 has a high diagnostic value for AMI as well as a prognostic value for major adverse cardiovascular events (MACEs). The elevation of BRE-AS1 promoted oxidative stress injury and cell apoptosis in vitro.


Asunto(s)
Apoptosis , Mediadores de Inflamación , Infarto del Miocardio , Miocitos Cardíacos , Estrés Oxidativo , ARN Largo no Codificante , Animales , Femenino , Humanos , Masculino , Ratas , Estudios de Casos y Controles , Línea Celular , Citocinas/metabolismo , Citocinas/sangre , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/sangre , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/sangre , Infarto del Miocardio/genética , Infarto del Miocardio/diagnóstico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/sangre , Daño por Reperfusión Miocárdica/diagnóstico , Daño por Reperfusión Miocárdica/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , ARN Largo no Codificante/sangre , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal , Regulación hacia Arriba
2.
PeerJ ; 12: e16875, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680889

RESUMEN

Background: Extracellular vesicles (EVs) are membrane-bound vesicles containing various proteins, lipids, and nucleic acids. EVs are found in many body fluids, such as blood and urine. The release of EVs can facilitate intercellular communication through fusion with the plasma membrane or endocytosis into the recipient cell or through internalization of the contents. Recent studies have reported that EVs isolated from human endometrial epithelial cells (EECs) promote sperm fertilization ability. EVs from uterine flushing fluid more closely resemble the physiological condition of the uterus. However, it is unclear whether EVs derived directly from uterine flushing fluid have the same effect on sperm. This study aimed to research the effect of EVs from uterine flushing fluid on sperm. Methods: EVs were isolated from the uterine flushing fluid. The presence of EVs was confirmed by nanoparticle tracking analysis (NTA), Western blot, and transmission electron microscopy (TEM). EVs were incubated with human sperm for 2 h and 4 h. The effects of EVs on sperm were evaluated by analyzing acrosome reaction, sperm motility, and reactive oxygen species (ROS). Results: The EVs fractions isolated from the uterine fluid were observed in cup-shaped vesicles of different sizes by TEM. All isolated vesicles contained similar numbers of vesicles in the expected size range (30-200 nm) by NTA. CD9 and CD63 were detected in EVs by western blot. Comparing the motility of the two groups incubated sperm motility significantly differed at 4 h. The acrosome reactions were promoted by incubating with EVs significantly. ROS were increased in sperm incubated with EVs. Conclusion: Our results showed EVs present in the uterine fluid. Acrosome reactions and ROS levels increased in human sperm incubated with EVs. EVs from uterine fluid can promote the capacitation of human sperm. The increased capacitation after sperm interaction with EVs suggests a possible physiological effect during the transit of the uterus.


Asunto(s)
Exosomas , Especies Reactivas de Oxígeno , Capacitación Espermática , Espermatozoides , Útero , Humanos , Masculino , Femenino , Exosomas/metabolismo , Capacitación Espermática/fisiología , Espermatozoides/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Útero/metabolismo , Útero/fisiología , Motilidad Espermática/fisiología , Líquidos Corporales/química , Líquidos Corporales/metabolismo , Reacción Acrosómica/fisiología , Microscopía Electrónica de Transmisión
3.
Artículo en Inglés | MEDLINE | ID: mdl-38980654

RESUMEN

To investigate the impacts of circ_0069094 on acute coronary syndrome. Real-time polymerase chain reaction was used to detect the expression levels of circ_0069094, and its diagnostic performance was evaluated using ROC curve. Spearman's method was performed for correlation analysis. The levels of SOD, MDA, vWF in ACS rat models were assessed by commercial kits. The activities of H/R cell models were detected by CCK-8, Transwell, flow cytometry. The GO and KEGG were performed to analyze the function of targeted genes of miR-484. The concentration of circ_0069094 was decreased in patients with ACS, ACS rat models and H/R HUVEC models. The dysfunction of SOD, MDA, vWF, LVIDs, LVDD, and LVEF in the ACS models was regulated by the increase of circ_0069094. The viability, migration, apoptosis of the H/R models were regulated by circ_0069094. MiR-484 was a ceRNA of circ_0069094 and mediated the function of circ_0069094.

4.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166997, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38142758

RESUMEN

Accumulating evidence highlights the key importance of innate immunity in heart hypertrophy and failure. Though stimulator of interferon genes (STING) is an integral innate immunity regulator, whether cardiomyocyte-derived STING driving cardiac hypertrophy and failure has rarely been explored, nor has its underlying mechanism been clarified. Herein, we addressed these two questions through several mouse experiments. Our results revealed that cardiac tissues from patients exhibiting cardiac hypertrophy markedly increased STING expression. Myocardial tissues of mice challenged with angiotensin II (Ang II) or transverse aortic constriction (TAC) also showed that STING was consistently upregulated and activated. Activation of STING by cGAMP or DMXAA resulted in cardiomyocyte hypertrophy in vitro, which was abolished by STING knockout. Furthermore, deleting or pharmacologically inhibiting STING attenuated cardiac hypertrophy and dysfunction in TAC or Ang II-treated mice. In contrast, mice with cardiomyocyte-specific STING activation developed cardiac hypertrophy and failure. Mechanistically, NF-κB signaling but not TBK1 or autophagy formation was implicated in STING -induced cardiac hypertrophy and failure. Collectively, we identified that STING-NF-κB axis mediated inflammatory response to drive cardiac hypertrophy-associated heart failure, highlighting its promise as a potential therapeutic target in clinical practice.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Animales , Humanos , Ratones , Angiotensina II/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , FN-kappa B/metabolismo
5.
ACS Cent Sci ; 10(1): 184-198, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38292600

RESUMEN

Nonhealing skin wounds are a problematic complication associated with diabetes. Therapeutic gases delivered by biomaterials have demonstrated powerful wound healing capabilities. However, the cellular responses and heterogeneity in the skin regeneration process after gas therapy remain elusive. Here, we display the benefit of the carbon monoxide (CO)-releasing hyaluronan hydrogel (CO@HAG) in promoting diabetic wound healing and investigate the cellular responses through single-cell transcriptomic analysis. The presented CO@HAG demonstrates wound microenvironment responsive gas releasing properties and accelerates the diabetic wound healing process in vivo. It is found that a new cluster of Cxcl14+ fibroblasts with progenitor property is accumulated in the CO@HAG-treated wound. This cluster of Cxcl14+ fibroblasts is yet unreported in the skin regeneration process. CO@HAG-treated wound macrophages feature a decrease in pro-inflammatory property, while their anti-inflammatory property increases. Moreover, the TGF-ß signal between the pro-inflammatory (M1) macrophage and the Cxcl14+ fibroblast in the CO@HAG-treated wound is attenuated based on cell-cell interaction analysis. Our study provides a useful hydrogel-mediated gas therapy method for diabetic wounds and new insights into cellular events in the skin regeneration process after gas-releasing biomaterials therapy.

6.
Cardiovasc Res ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842387

RESUMEN

BACKGROUND: Atherosclerosis is a leading cause of cardiovascular morbidity and mortality. Atherosclerotic lesions show increased levels of proteins associated with the fibroblast growth factor receptor (FGFR) pathway. However, the functional significance and mechanisms governed by FGFR signaling in atherosclerosis are not known. In the present study, we investigated FGFR1 signaling in atherosclerosis development and progression. METHODS AND RESULTS: Examination of human atherosclerotic lesions and aortas of Apoe-/- mice fed a high-fat diet (HFD) showed increased levels of FGFR1 in macrophages. We deleted myeloid-expressed Fgfr1 in Apoe-/- mice and showed that Fgfr1 deficiency reduces atherosclerotic lesions and lipid accumulations in both male and female mice upon HFD feeding. These protective effects of myeloid Fgfr1 deficiency were also observed when mice with intact FGFR1 were treated with FGFR inhibitor AZD4547. To understand the mechanistic basis of this protection, we harvested macrophages from mice and show that FGFR1 is required for macrophage inflammatory responses and uptake of oxidized LDL. RNA sequencing showed that FGFR1 activity is mediated through phospholipase-C-gamma (PLCγ) and the activation of nuclear factor-κB (NF-κB) but is independent of FGFR substrate 2. CONCLUSION: Our study provides evidence of a new FGFR1-PLCγ- NF-κB axis in macrophages in inflammatory atherosclerosis, supporting FGFR1 as a potentially therapeutic target for atherosclerosis-related diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA