Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31604764

RESUMEN

Transcriptional regulation of cellulolytic and xylolytic genes in ascomycete fungi is controlled by specific carbon sources in different external environments. Here, comparative transcriptomic analyses of Penicillium oxalicum grown on wheat bran (WB), WB plus rice straw (WR), or WB plus Avicel (WA) as the sole carbon source under solid-state fermentation (SSF) revealed that most of the differentially expressed genes (DEGs) were involved in metabolism, specifically, carbohydrate metabolism. Of the DEGs, the basic core carbohydrate-active enzyme-encoding genes which responded to the plant biomass resources were identified in P. oxalicum, and their transcriptional levels changed to various extents depending on the different carbon sources. Moreover, this study found that three deletion mutants of genes encoding putative transcription factors showed significant alterations in filter paper cellulase production compared with that of a parental P. oxalicum strain with a deletion of Ku70 (ΔPoxKu70 strain) when grown on WR under SSF. Importantly, the ΔPoxAtf1 mutant (with a deletion of P. oxalicumAtf1, also called POX03016) displayed 46.1 to 183.2% more cellulase and xylanase production than a ΔPoxKu70 mutant after 2 days of growth on WR. RNA sequencing and quantitative reverse transcription-PCR revealed that PoxAtf1 dynamically regulated the expression of major cellulase and xylanase genes under SSF. PoxAtf1 bound to the promoter regions of the key cellulase and xylanase genes in vitro This study provides novel insights into the regulatory mechanism of fungal cellulase and xylanase gene expression under SSF.IMPORTANCE The transition to a more environmentally friendly economy encourages studies involving the high-value-added utilization of lignocellulosic biomass. Solid-state fermentation (SSF), that simulates the natural habitat of soil microorganisms, is used for a variety of applications such as biomass biorefinery. Prior to the current study, our understanding of genome-wide gene expression and of the regulation of gene expression of lignocellulose-degrading enzymes in ascomycete fungi during SSF was limited. Here, we employed RNA sequencing and genetic analyses to investigate transcriptomes of Penicillium oxalicum strain EU2101 cultured on medium containing different carbon sources and to identify and characterize transcription factors for regulating the expression of cellulase and xylanase genes during SSF. The results generated will provide novel insights into genetic engineering of filamentous fungi to further increase enzyme production.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , Ascomicetos/enzimología , Ascomicetos/genética , Celulasa/genética , Fermentación , Regulación Fúngica de la Expresión Génica , Xilosidasas/genética , Ascomicetos/crecimiento & desarrollo , Biomasa , Celulasa/metabolismo , Medios de Cultivo/química , ADN de Hongos/genética , Eliminación de Gen , Genes Fúngicos/genética , Lignina/metabolismo , Penicillium/enzimología , Penicillium/genética , Penicillium/crecimiento & desarrollo , Regiones Promotoras Genéticas , ARN de Hongos/genética , Microbiología del Suelo , Xilosidasas/metabolismo
2.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29980558

RESUMEN

Soil fungi produce a wide range of chemical compounds and enzymes with potential for applications in medicine and biotechnology. Cellular processes in soil fungi are highly dependent on the regulation under environmentally induced stress, but most of the underlying mechanisms remain unclear. Previous work identified a key GATA-type transcription factor, Penicillium oxalicum NsdD (PoxNsdD; also called POX08415), that regulates the expression of cellulase and xylanase genes in P. oxalicum PoxNsdD shares 57 to 64% identity with the key activator NsdD, involved in asexual development in Aspergillus In the present study, the regulatory roles of PoxNsdD in P. oxalicum were further explored. Comparative transcriptomic profiling revealed that PoxNsdD regulates major genes involved in starch, cellulose, and hemicellulose degradation, as well as conidiation and pigment biosynthesis. Subsequent experiments confirmed that a ΔPoxNsdD strain lost 43.9 to 78.8% of starch-digesting enzyme activity when grown on soluble corn starch, and it produced 54.9 to 146.0% more conidia than the ΔPoxKu70 parental strain. During cultivation, ΔPoxNsdD cultures changed color, from pale orange to brick red, while the ΔPoxKu70 cultures remained bluish white. Real-time quantitative reverse transcription-PCR showed that PoxNsdD dynamically regulated the expression of a glucoamylase gene (POX01356/Amy15A), an α-amylase gene (POX09352/Amy13A), and a regulatory gene (POX03890/amyR), as well as a polyketide synthase gene (POX01430/alb1/wA) for yellow pigment biosynthesis and a conidiation-regulated gene (POX06534/brlA). Moreover, in vitro binding experiments showed that PoxNsdD bound the promoter regions of the above-described genes. This work provides novel insights into the regulatory mechanisms of fungal cellular processes and may assist in genetic engineering of Poxalicum for potential industrial and medical applications.IMPORTANCE Most filamentous fungi produce a vast number of extracellular enzymes that are used commercially for biorefineries of plant biomass to produce biofuels and value-added chemicals, which might promote the transition to a more environmentally friendly economy. The expression of these extracellular enzyme genes is tightly controlled at the transcriptional level, which limits their yields. Hitherto our understanding of the regulation of expression of plant biomass-degrading enzyme genes in filamentous fungi has been rather limited. In the present study, regulatory roles of a key regulator, PoxNsdD, were further explored in the soil fungus Penicillium oxalicum, contributing to the understanding of gene regulation in filamentous fungi and revealing the biotechnological potential of Poxalicum via genetic engineering.


Asunto(s)
Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Penicillium/metabolismo , Pigmentos Biológicos/biosíntesis , Esporas Fúngicas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Biodegradación Ambiental , Celulasa/genética , Celulasa/metabolismo , Celulosa/metabolismo , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Glucano 1,4-alfa-Glucosidasa/genética , Glucano 1,4-alfa-Glucosidasa/metabolismo , Penicillium/enzimología , Penicillium/genética , Penicillium/crecimiento & desarrollo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Factores de Transcripción/genética , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
3.
Biotechnol Biofuels ; 10: 279, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29201143

RESUMEN

BACKGROUND: The transition to a more environmentally friendly economy has prompted studies of modern biorefineries, including the utilization of low-value lignocellulose. The major challenge facing the widespread application of biorefineries is the high cost of enzymes that can efficiently hydrolyze recalcitrant cellulose to sugars. Penicillium oxalicum produces large amounts of plant-cell-wall-degrading enzymes, but their production is tightly controlled by complex regulatory networks, resulting in low yields of the native enzymes. Regulatory genes have been the targets of genetic engineering to improve enzyme production in microorganisms. In this study, we used transcriptomic profiling and genetic analyses to screen for and identify novel key regulators of cellulase and xylanase gene expression in P. oxalicum. RESULTS: A comparative analysis of the transcriptomes of P. oxalicum HP7-1 on different carbon sources, including glucose, wheat bran, and wheat bran plus Avicel, identified 40 candidate genes regulating the expression of cellulolytic enzyme genes. Deletion mutants of 31 candidate genes were constructed in P. oxalicum ∆PoxKu70 and 11 resultant mutants showed significant changes in their filter-paper cellulase production compared with the parental strain ∆PoxKu70. Among these 11 mutants, ΔPoxCxrA, ΔPoxCxrB, and ΔPoxNsdD showed the most significant reduction in the enzyme production (96.8, 75.9, and 58.5%, respectively). Ten of these 11 genes are here reported to be involved in cellulase production for the first time. Further tests revealed that ΔPoxCxrA, ΔPoxCxrB, and ΔPoxNsdD displayed significantly reduced xylanase production, whereas ΔPoxCxrA produced negligible xylanase. Interestingly, ΔPoxCxrB and ΔPoxNsdD showed significantly increased ß-glucosidase production. Real-time quantitative reverse transcription-PCR and an electrophoretic mobility shift assay (EMSA) showed that PoxCxrA, PoxCxrB, and PoxNsdD regulate the expression of one another, but the mode of regulation changes dynamically during the growth of fungal cells in the presence of cellulose. EMSA showed that PoxCxrA, PoxCxrB, and PoxNsdD directly bind the putative promoters of major cellulase and xylanase genes. CONCLUSIONS: We have detected and identified three key new regulatory genes, PoxCxrA, PoxCxrB, and PoxNsdD, that directly and indirectly regulate the expression of cellulase and xylanase genes in P. oxalicum. This study provides novel insights into the regulatory mechanisms of fungal cellulase and xylanase gene expression.

4.
Biotechnol Biofuels ; 9: 203, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27688806

RESUMEN

BACKGROUND: The filamentous fungus Penicillium oxalicum is a potential alternative to Trichoderma reesei for industrial production of a complete cellulolytic enzyme system for a bio-refinery. Comparative omics approaches can support rational genetic engineering and/or breeding of filamentous fungi with improved cellulase production capacity. In this study, comparative genomic, transcriptomic and secretomic profiling of P. oxalicum HP7-1 and its cellulase and xylanase hyper-producing mutant EU2106 were employed to screen for novel regulators of cellulase and xylanase gene expression. RESULTS: The 30.62 Mb P. oxalicum HP7-1 genome was sequenced, and 9834 protein-coding genes were annotated. Re-sequencing of the mutant EU2106 genome identified 274 single nucleotide variations and 12 insertion/deletions. Comparative genomic, transcriptomic and secretomic profiling of HP7-1 and EU2106 revealed four candidate regulators of cellulase and xylanase gene expression. Deletion of these candidate genes and measurement of the enzymatic activity of the resultant mutants confirmed the identity of three regulatory genes. POX02484 and POX08522, encoding a putative Zn(II)2Cys6 DNA-binding domain and forkhead protein, respectively, were found to be novel, while PoxClrB is an ortholog of ClrB, a key transcriptional regulator of cellulolytic enzyme gene expression in filamentous fungi. ΔPOX02484 and ΔPOX08522 mutants exhibited significantly reduced ß-glucosidase activity, increased carboxymethylcellulose cellulase and xylanase activities, and altered transcription level of cellulase and xylanase genes compared with the parent strain ΔPoxKu70, with Avicel as the sole carbon source. CONCLUSIONS: Two novel genes, POX02484 and POX08522, were found and characterized to regulate the expression of cellulase and xylanase genes in P. oxalicum. These findings are important for engineering filamentous fungi to improve cellulase and xylanase production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA