Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Metab Eng ; 83: 206-215, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38710300

RESUMEN

Shewanella oneidensis MR-1 has found widespread applications in pollutant transformation and bioenergy production, closely tied to its outstanding heme synthesis capabilities. However, this significant biosynthetic potential is still unexploited so far. Here, we turned this bacterium into a highly-efficient bio-factory for green synthesis of 5-Aminolevulinic Acid (5-ALA), an important chemical for broad applications in agriculture, medicine, and the food industries. The native C5 pathway genes of S. oneidensis was employed, together with the introduction of foreign anti-oxidation module, to establish the 5-ALA production module, resulting 87-fold higher 5-ALA yield and drastically enhanced tolerance than the wild type. Furthermore, the metabolic flux was regulated by using CRISPR interference and base editing techniques to suppress the competitive pathways to further improve the 5-ALA titer. The engineered strain exhibited 123-fold higher 5-ALA production capability than the wild type. This study not only provides an appealing new route for 5-ALA biosynthesis, but also presents a multi-dimensional modularized engineering strategy to broaden the application scope of S. oneidensis.


Asunto(s)
Ácido Aminolevulínico , Ingeniería Metabólica , Shewanella , Shewanella/genética , Shewanella/metabolismo , Ácido Aminolevulínico/metabolismo
2.
Pharm Res ; 41(1): 141-151, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040879

RESUMEN

BACKGROUND & PURPOSE: Different methods have been exploited to generate amorphous solid dispersions (ASDs) of poorly water-soluble drugs. However, the impact of processing methods on drug stability and dissolution hasn't been studied extensively. The purpose of the current study is to investigate the impact of the two common ASD processing methods, hot-melt extrusion (HME) and spray drying, on the chemical/physical stability and supersaturation of Posaconazole (Posa) based ASDs. METHODS & RESULTS: ASDs with 25% drug loading in hydroxypropylmethylcellulose acetate succinate were prepared using HME, and two types of spray dryers, a Procept Sprayer (ASD-Procept) and a Nano Sprayer (ASD-Nano). The relative physical stability of these ASDs upon exposure to heat and crystalline API seeding followed the order: ASD-Nano > ASD-Procept ≈HME. ASD-Procept and ASD-Nano showed similar chemical stability, slightly less stable than HME under 40°C/75%RH. All three ASDs demonstrated similar supersaturation induction times, and de-supersaturation kinetics with or without crystalline seeds. CONCLUSIONS: Posa ASDs prepared via spray drying were chemically less stable compared with HME, which can be attributed to their smaller particle size and hollow structure allowing oxygen penetration. For ASD-Procept and HME, the detailed phase changes involving recrystallization of amorphous Posa and a solid-solid phase transition from Posa Form I to Form Ia during the seed-induced studies were proposed. Similar dissolution and supersaturation-precipitation kinetics of three Posa ASDs indicated that any residual nanocrystals in the bulk ASDs were not enough to induce crystallization to differentiate ASDs made by three processing methods.


Asunto(s)
Triazoles , Solubilidad , Cristalización , Transición de Fase , Composición de Medicamentos/métodos
3.
Inorg Chem ; 63(25): 11583-11591, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38857486

RESUMEN

Conjugated molecules with donor-acceptor-donor (D-A-D) moieties have garnered significant attention for their ability to form luminescent metal-organic frameworks (LMOFs). D-A-D molecules feature tunable bandgaps, which can be varied systematically to control the fluorescence wavelength of LMOFs. In this study, we prepared and characterized the fluorescence properties of two porous interpenetrated Zr-organic frameworks (PIZOFs) constructed using 4,4'-(benzo[c][1,2,5]selenadiazole-4,7-diylbis(ethyne-2,1-diyl))dibenzoic acid (L-Se) or 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diylbis(ethyne-2,1-diyl))dibenzoic acid (L-S) as linkers. The corresponding MOFs are denoted as PIZOF-Se and PIZOF-S, respectively. Through our investigation, we explored the correlation between the structure of the frameworks and their respective optical properties. Our findings revealed that there are distinct differences in the fluorescence properties of the two PIZOFs. Specifically, the fluorescence of PIZOF-S is red-shifted from that characteristic of the corresponding linker, L-S. By contrast, the fluorescence of PIZOF-Se is substantially blue-shifted from that of linker L-Se. The emission of mixed-linker MOFs is explored by combining L-S or L-Se with structurally analogous, but nonfluorescent linker, 4,4'-((perfluoro-1,4-phenylene)bis(ethyne-2,1-diyl))dibenzoic acid (L-F). Based on steady-state and time-resolved photoluminescence experiments, as well as confocal fluorescence microscopy combined with fluorescence lifetime imaging (FILM), we demonstrated that linker engineering is an effective method to tune the emission behavior of LMOFs.

4.
Environ Sci Technol ; 58(17): 7291-7301, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38623940

RESUMEN

The environmental dissemination of extracellular antibiotic resistance genes (eARGs) in wastewater and natural water bodies has aroused growing ecological concerns. The coexisting chemical pollutants in water are known to markedly affect the eARGs transfer behaviors of the environmental microbial community, but the detailed interactions and specific impacts remain elusive so far. Here, we revealed a concentration-dependent impact of dimethyl phthalate (DMP) and several other types of phthalate esters (common water pollutants released from plastics) on the natural transformation of eARGs. The DMP exposure at an environmentally relevant concentration (10 µg/L) resulted in a 4.8-times raised transformation frequency of Acinetobacter baylyi but severely suppressed the transformation at a high concentration (1000 µg/L). The promotion by low-concentration DMP was attributed to multiple mechanisms, including increased bacterial mobility and membrane permeability to facilitate eARGs uptake and improved resistance of the DMP-bounded eARGs (via noncovalent interaction) to enzymatic degradation (with suppressed DNase activity). Similar promoting effects of DMP on the eARGs transformation were also found in real wastewater and biofilm systems. In contrast, higher-concentration DMP suppressed the eARGs transformation by disrupting the DNA structure. Our findings highlight a potentially underestimated eARGs spreading in aquatic environments due to the impacts of coexisting chemical pollutants and deepen our understanding of the risks of biological-chemical combined pollution in wastewater and environmental water bodies.


Asunto(s)
Farmacorresistencia Microbiana , Ácidos Ftálicos , Farmacorresistencia Microbiana/genética , Aguas Residuales , Biopelículas/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
5.
Acta Pharmacol Sin ; 45(5): 1002-1018, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38225395

RESUMEN

Diabetes mellitus results in numerous complications. Diabetic pulmonary fibrosis (DPF), a late pulmonary complication of diabetes, has not attracted as much attention as diabetic nephropathy and cardiomyopathy. Mangiferin (MF) is a natural small molecular compound that exhibits a variety of pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetes, and anti-fibrosis effects. In this study, we investigated whether long-term diabetes shock induces DPF, and explored whether MF had a protective effect against DPF. We first examined the lung tissues and sections of 20 diabetic patients obtained from discarded lung surgical resection specimens and found that pulmonary fibrosis mainly accumulated around the pulmonary vessels, accompanied by significantly enhanced endothelial-mesenchymal transition (EndMT). We established a mouse model of DPF by STZ injections. Ten days after the final STZ injection, the mice were administered MF (20, 60 mg/kg, i.g.) every 3 days for 4 weeks, and kept feeding until 16 weeks and euthanized. We showed that pulmonary fibrotic lesions were developed in the diabetic mice, which began around the pulmonary vessels, while MF administration did not affect long-term blood glucose levels, but dose-dependently alleviated diabetes-induced pulmonary fibrosis. In human umbilical vein endothelial cells (HUVECs), exposure to high glucose (33.3 mM) induced EndMT, which was dose-dependently inhibited by treatment with MF (10, 50 µM). Furthermore, MF treatment promoted SIRT3 expression in high glucose-exposed HUVECs by directly binding to AMPK to enhance the activity of FoxO3, which finally reversed diabetes-induced EndMT. We conclude that MF attenuates DPF by inhibiting EndMT through the AMPK/FoxO3/SIRT3 axis. MF could be a potential candidate for the early prevention and treatment of DPF.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diabetes Mellitus Experimental , Proteína Forkhead Box O3 , Ratones Endogámicos C57BL , Fibrosis Pulmonar , Sirtuina 3 , Xantonas , Animales , Xantonas/farmacología , Xantonas/uso terapéutico , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Sirtuina 3/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Proteína Forkhead Box O3/metabolismo , Masculino , Humanos , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Estreptozocina , Transducción de Señal/efectos de los fármacos , Transición Endotelial-Mesenquimatosa
6.
BMC Public Health ; 24(1): 456, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350909

RESUMEN

OBJECTIVE: Metabolic risks play a key role in the progression of pancreatic cancer. This study aimed to present global, regional and national data on mortality and disability-adjusted life-year (DALY) for pancreatic cancer attributable to metabolic risk and to forecast mortality to 2030 using data from the Global Burden of Disease (GBD). METHODS: Data on mortality and DALYs due to pancreatic cancer attributable to metabolic risks were obtained from GBD 2019. Metabolic risks include high fasting plasma glucose (FPG) and high body mass index (BMI). Total numbers and age-standardized rates per 100,000 people for mortality and DALYs were reported by age, sex, region and country/territory from 1990 to 2019. The "Bayes age-period-cohort" method was used for projections of mortality to 2030. RESULTS: Globally, there was a 3.5-fold increase in the number of pancreatic cancer deaths attributable to metabolic risk, from 22,091 in 1990 to 77,215 in 2019. High-income North America and Central Europe had the highest age-standardized mortality rates (ASMRs) of pancreatic cancer attributable to high FPG and high BMI in 2019, respectively. From 1990 to 2019, the global ASMR of pancreatic cancer attributable to high FPG and high BMI increased. Countries with high healthcare access quality had much higher age-standardized DALY rates. In the next 10 years, the ASMR of pancreatic cancer attributable to high FPG and high BMI will continue to increase. CONCLUSION: Pancreatic cancer mortality and DALYs attributable to metabolic factors remain high, particularly in high-income regions or countries. Studies on the metabolic mechanism of pancreatic cancer and effective treatment strategies are needed.


Asunto(s)
Carga Global de Enfermedades , Neoplasias Pancreáticas , Humanos , Factores de Riesgo , Teorema de Bayes , Índice de Masa Corporal , Años de Vida Ajustados por Calidad de Vida , Salud Global
7.
Theor Appl Genet ; 136(5): 116, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37093290

RESUMEN

KEY MESSAGE: Two candidate genes (ZmbZIP113 and ZmTSAH1) controlling low-temperature germination ability were identified by QTL-seq and integrative transcriptomic analyses. The functional verification results showed that two candidate genes positively regulated the low-temperature germination ability of IB030. Low-temperature conditions cause slow maize (Zea mays L.) seed metabolism, resulting in slow seedling emergence and irregular seedling emergence, which can cause serious yield loss. Thus, improving a maize cultivar's low-temperature germination ability (LTGA) is vital for increasing yield production. Wild relatives of maize, such as Z. perennis and Tripsacum dactyloides, are strongly tolerant of cold stress and can thus be used to improve the LTGA of maize. In a previous study, the genetic bridge MTP was constructed (from maize, T. dactyloides, and Z. perennis) and used to obtain a highly LTGA maize introgression line (IB030) by backcross breeding. In this study, IB030 (Strong-LTGA) and Mo17 (Weak-LTGA) were selected as parents to construct an F2 offspring. Additionally, two major QTLs (qCS1-1 and qCS10-1) were mapped. Then, RNA-seq was performed using seeds of IB030 and the recurrent parent B73 treated at 10 °C for 27 days and 25 °C for 7 days, respectively, and two candidate genes (ZmbZIP113 and ZmTSAH1) controlling LTGA were located using QTL-seq and integrative transcriptomic analyses. The functional verification results showed that the two candidate genes positively regulated LTGA of IB030. Notably, homologous cloning showed that the source of variation in both candidate genes was the stable inheritance of introgressed alleles from Z. perennis. This study was thus able to analyze the LTGA mechanism of IB030 and identify resistance genes for genetic improvement in maize, and it proved that using MTP genetic bridge confers desirable traits or phenotypes of Z. perennis and tripsacum essential to maize breeding systems.


Asunto(s)
Transcriptoma , Zea mays , Zea mays/genética , Temperatura , Fitomejoramiento , Sitios de Carácter Cuantitativo , Poaceae/genética , Fenotipo , Germinación
8.
Biotechnol Bioeng ; 120(10): 3001-3012, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37209207

RESUMEN

Geobacter species, exhibiting exceptional extracellular electron transfer aptitude, hold great potential for applications in pollution remediation, bioenergy production, and natural elemental cycles. Nonetheless, a scarcity of well-characterized genetic elements and gene expression tools constrains the effective and precise fine-tuning of gene expression in Geobacter species, thereby limiting their applications. Here, we examined a suite of genetic elements and developed a new genetic editing tool in Geobacter sulfurreducens to enhance their pollutant conversion capacity. First, the performances of the widely used inducible promoters, constitutive promoters, and ribosomal binding sites (RBSs) elements in G. sulfurreducens were quantitatively evaluated. Also, six native promoters with superior expression levels than constitutive promoters were identified on the genome of G. sulfurreducens. Employing the characterized genetic elements, the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system was constructed in G. sulfurreducens to achieve the repression of an essential gene-aroK and morphogenic genes-ftsZ and mreB. Finally, applying the engineered strain to the reduction of tungsten trioxide (WO3 ), methyl orange (MO), and Cr(VI), We found that morphological elongation through ftsZ repression amplified the extracellular electron transfer proficiency of G. sulfurreducens and facilitated its contaminant transformation efficiency. These new systems provide rapid, versatile, and scalable tools poised to expedite advancements in Geobacter genomic engineering to favor environmental and other biotechnological applications.


Asunto(s)
Contaminantes Ambientales , Geobacter , Geobacter/genética , Contaminantes Ambientales/metabolismo , Transporte de Electrón , Expresión Génica , Oxidación-Reducción
9.
Phytochem Rev ; : 1-46, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37359712

RESUMEN

Cyperus rotundus L. has been widely used in the treatment and prevention of numerous diseases in traditional systems of medicine around the world, such as nervous, gastrointestinal systems diseases and inflammation. In traditional Chinese medicine (TCM), its rhizomes are frequently used to treat liver disease, stomach pain, breast tenderness, dysmenorrheal and menstrual irregularities. The review is conducted to summarize comprehensively the plant's vernacular names, distribution, phytochemistry, pharmacology, toxicology and analytical methods, along with the data mining for TCM prescriptions containing C. rotundus. Herein, 552 compounds isolated or identified from C. rotundus were systematically collated and classified, concerning monoterpenoids, sesquiterpenoids, flavonoids, phenylpropanoids, phenolics and phenolic glycosides, triterpenoids and steroids, diterpenoids, quinonoids, alkaloids, saccharides and others. Their pharmacological effects on the digestive system, nervous system, gynecological diseases, and other bioactivities like antioxidant, anti-inflammatory, anti-cancer, insect repellent, anti-microbial activity, etc. were summarized accordingly. Moreover, except for the data mining on the compatibility of C. rotundus in TCM, the separation, identification and analytical methods of C. rotundus compositions were also systematically summarized, and constituents of the essential oils from different regions were re-analyzed using multivariate statistical analysis. In addition, the toxicological study progresses on C. rotundus revealed the safety property of this herb. This review is designed to serve as a scientific basis and theoretical reference for further exploration into the clinical use and scientific research of C. rotundus. Supplementary Information: The online version contains supplementary materials available at 10.1007/s11101-023-09870-3.

10.
Environ Sci Technol ; 57(17): 6876-6887, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37083356

RESUMEN

Plastics-microorganism interactions have aroused growing environmental and ecological concerns. However, previous studies concentrated mainly on the direct interactions and paid little attention to the ecotoxicology effects of phthalates (PAEs), a common plastic additive that is continuously released and accumulates in the environment. Here, we provide insights into the impacts of PAEs on the dissemination of antibiotic resistance genes (ARGs) among environmental microorganisms. Dimethyl phthalate (DMP, a model PAE) at environmentally relevant concentrations (2-50 µg/L) significantly boosted the plasmid-mediated conjugation transfer of ARGs among intrageneric, intergeneric, and wastewater microbiota by up to 3.82, 4.96, and 4.77 times, respectively. The experimental and molecular dynamics simulation results unveil a strong interaction between the DMP molecules and phosphatidylcholine bilayer of the cell membrane, which lowers the membrane lipid fluidity and increases the membrane permeability to favor transfer of ARGs. In addition, the increased reactive oxygen species generation and conjugation-associated gene overexpression under DMP stress also contribute to the increased gene transfer. This study provides fundamental knowledge of the PAE-bacteria interactions to broaden our understanding of the environmental and ecological risks of plastics, especially in niches with colonized microbes, and to guide the control of ARG environmental spreading.


Asunto(s)
Antibacterianos , Bacterias , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Bacterias/genética , Genes Bacterianos , Plásticos , Transferencia de Gen Horizontal
11.
Chem Biodivers ; 20(9): e202300693, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37614210

RESUMEN

Chemical investigation on the water-soluble constituents of Stemona tuberosa Lour. resulted in the isolation of a previously undescribed furfural derivative namely (S)-5-((R)-hydroxy(5-(hydroxymethyl)furan-2-yl)methyl)-5-methylfuran-2(5H)-one and twenty-five known compounds from the water decoction of the dried root tubers. Their structures were determined by analysis of the extensive spectroscopic data, including 1D/2D NMR, HR-ESI-MS, and ORD, as well as the ECD simulation and comparison. Most of them were phenolic and among them, four compounds were isolated from Stemona plants for the first time. This study uncovers diverse constituents from water decoction of S. tuberosa dedicated for its quality control and allows for the exploitation of chemical markers with potential significance for discrimination of Stemona plants.


Asunto(s)
Alcaloides , Stemonaceae , Alcaloides/química , Stemonaceae/química , Furaldehído/análisis , Tubérculos de la Planta/química , Espectroscopía de Resonancia Magnética , Estructura Molecular
12.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36768951

RESUMEN

Chilling injury owing to low temperatures severely affects the growth and development of maize (Zea mays.L) seedlings during the early and late spring seasons. The existing maize germplasm is deficient in the resources required to improve maize's ability to tolerate cold injury. Therefore, it is crucial to introduce and identify excellent gene/QTLs that confer cold tolerance to maize for sustainable crop production. Wild relatives of maize, such as Z. perennis and Tripsacum dactyloides, are strongly tolerant to cold and can be used to improve the cold tolerance of maize. In a previous study, a genetic bridge among maize that utilized Z. perennis and T. dactyloides was created and used to obtain a highly cold-tolerant maize introgression line (MIL)-IB030 by backcross breeding. In this study, two candidate genes that control relative electrical conductivity were located on MIL-IB030 by forward genetics combined with a weighted gene co-expression network analysis. The results of the phenotypic, genotypic, gene expression, and functional verification suggest that two candidate genes positively regulate cold tolerance in MIL-IB030 and could be used to improve the cold tolerance of cultivated maize. This study provides a workable route to introduce and mine excellent genes/QTLs to improve the cold tolerance of maize and also lays a theoretical and practical foundation to improve cultivated maize against low-temperature stress.


Asunto(s)
Plantones , Zea mays , Plantones/genética , Transcriptoma , Fitomejoramiento , Mapeo Cromosómico , Frío
13.
Molecules ; 28(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37513256

RESUMEN

Nardosinone, a predominant bioactive product from Nardostachys jatamansi DC, is well-known for its promising therapeutic applications, such as being used as a drug on anti-inflammatory, antidepressant, cardioprotective, anti-neuroinflammatory, anti-arrhythmic, anti-periodontitis, etc. However, its stability under varying environmental conditions and its degradation products remain unclear. In this study, four main degradation products, including two previously undescribed compounds [2-deoxokanshone M (64.23%) and 2-deoxokanshone L (1.10%)] and two known compounds [desoxo-narchinol A (2.17%) and isonardosinone (3.44%)], were firstly afforded from the refluxed products of nardosinone in boiling water; their structures were identified using an analysis of the extensive NMR and X-ray diffraction data and the simulation and comparison of electronic circular dichroism spectra. Compared with nardosinone, 2-deoxokanshone M exhibited potent vasodilatory activity without any of the significant anti-neuroinflammatory activity that nardosinone contains. Secondly, UPLC-PDA and UHPLC-DAD/Q-TOF MS analyses on the degradation patterns of nardosinone revealed that nardosinone degraded more easily under high temperatures and in simulated gastric fluid compared with the simulated intestinal fluid. A plausible degradation pathway of nardosinone was finally proposed using nardosinonediol as the initial intermediate and involved multiple chemical reactions, including peroxy ring-opening, keto-enol tautomerization, oxidation, isopropyl cleavage, and pinacol rearrangement. Our findings may supply certain guidance and scientific evidence for the quality control and reasonable application of nardosinone-related products.


Asunto(s)
Sesquiterpenos , Sesquiterpenos/química , Temperatura , Sesquiterpenos Policíclicos , Antiinflamatorios
14.
J Mol Recognit ; 35(4): e2948, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35094438

RESUMEN

In this work, multi-spectroscopic and molecular docking methods have been conducted in the investigation of enantioselective interactions between diclazuril enantiomers and human/bovine serum albumins (HSA/BSA). The binding constants between serum albumins (SAs) and diclazuril enantiomers revealed that SAs exhibited stronger binding affinity for (R)-diclazuril than (S)-enantiomer. In addition, the fluorescence quenching of SAs induced by diclazuril enantiomers was ascribed to static quenching mechanism, in which hydrogen bonds and Van der Waals forces were the main interactions. According to the thermodynamic study, binding of diclazuril enantiomers and SAs was an exothermic process driven by enthalpy change. Then, circular dichroism spectroscopy of SAs with diclazuril enantiomers revealed that the SAs conformation had changed in the presence of diclazuril. Moreover, molecular docking technology was applied in exploration of interactions between SAs and diclazuril enantiomers. The docking energy between SAs and (R)-diclazuril was larger than (S)-diclazuril, which indicated that the affinity of SAs with (R)-diclazuril was stronger than (S)-enantiomer. This work may provide valuable information for explaining differences in pharmacokinetics and residue elimination of diclazuril enantiomers in living organisms.


Asunto(s)
Albúmina Sérica Humana , Albúmina Sérica , Sitios de Unión , Dicroismo Circular , Humanos , Simulación del Acoplamiento Molecular , Nitrilos , Unión Proteica , Albúmina Sérica/química , Albúmina Sérica Bovina/química , Albúmina Sérica Humana/química , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Estereoisomerismo , Termodinámica , Triazinas
15.
BMC Gastroenterol ; 22(1): 279, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35658912

RESUMEN

OBJECTIVE: Pancreatic body tail carcinoma (PBTC) is a relatively few pancreatic cancer in clinical practice, and its specific clinicopathological features and prognosis have not been fully described. In this study, we aimed to create a nomogram to predict the overall survival (OS) of patients with advanced PBTC. METHODS: We extracted clinical and related prognostic data of advanced PBTC patients from 2000 to 2018 from the Surveillance, Epidemiology, and End Results database. Independent prognostic factors were selected using univariate and multivariate Cox analyses, and a nomogram was constructed using R software. The C-index, area under the curve (AUC) of receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA) were used to assess the clinical utility of the nomogram. Finally, OS was assessed using the Kaplan-Meier method. RESULTS: A total of 1256 patients with advanced PBTC were eventually included in this study. Age, grade, N stage, M stage, surgery, and chemotherapy were identified as independent risk factors using univariate and multivariate Cox regression analyses (p < 0.05). In the training cohort, the calibration index of the nomogram was 0.709, while the AUC values of the nomogram, age, grade, N stage, M stage, surgery, and chemotherapy were 0.777, 0.562, 0.621, 0.5, 0.576, 0.632, and 0.323, respectively. Meanwhile, in the validation cohort, the AUC values of the nomogram, age, grade, N stage, M stage, surgery, and chemotherapy were 0.772, 0.551, 0.629, 0.534, 0.577, 0.606, and 0.639, respectively. Good agreement of the model in the training and validation cohorts was demonstrated in the calibration and DCA curves. Univariate survival analysis showed a statistically significant effect of age, grade, M stage, and surgery on prognosis (p < 0.05). CONCLUSION: Age, grade, M stage, and surgery were independently associated with OS, and the established nomogram was a visual tool to effectively predict OS in advanced PBTC patients.


Asunto(s)
Nomogramas , Neoplasias Pancreáticas , Humanos , Estadificación de Neoplasias , Pronóstico , Programa de VERF , Neoplasias Pancreáticas
16.
Environ Sci Technol ; 56(17): 12247-12256, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35960254

RESUMEN

Geobacter species are critically involved in elemental biogeochemical cycling and environmental bioremediation processes via extracellular electron transfer (EET), but the underlying biomolecular mechanisms remain elusive due to lack of effective analytical tools to explore into complicated EET networks. Here, a simple and highly efficient cytosine base editor was developed for engineering of the slow-growing Geobacter sulfurreducens (a doubling time of 5 h with acetate as the electron donor and fumarate as the electron acceptor). A single-plasmid cytosine base editor (pYYDT-BE) was constructed in G. sulfurreducens by fusing cytosine deaminase, Cas9 nickase, and a uracil glycosylase inhibitor. This system enabled single-locus editing at 100% efficiency and showed obvious preference at the cytosines in a TC, AC, or CC context than in a GC context. Gene inactivation tests confirmed that it could effectively edit 87.7-93.4% genes of the entire genome in nine model Geobacter species. With the aid of this base editor to construct a series of G. sulfurreducens mutants, we unveiled important roles of both pili and outer membrane c-type cytochromes in long-range EET, thereby providing important evidence to clarify the long-term controversy surrounding their specific roles. Furthermore, we find that pili were also involved in the extracellular reduction of uranium and clarified the key roles of the ExtHIJKL conduit complex and outer membrane c-type cytochromes in the selenite reduction process. This work developed an effective base editor tool for the genetic modification of Geobacter species and provided new insights into the EET network, which lay a basis for a better understanding and engineering of these microbes to favor environmental applications.


Asunto(s)
Contaminantes Ambientales , Geobacter , Citocromos/metabolismo , Citosina/metabolismo , Transporte de Electrón , Contaminantes Ambientales/metabolismo , Compuestos Férricos/metabolismo , Geobacter/metabolismo , Oxidación-Reducción
17.
Inorg Chem ; 60(14): 10065-10074, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-33908257

RESUMEN

This study probes femto- and picosecond excited-state dynamics of a series of N-heterocyclic carbene (NHC) ligand-containing platinum(II) complexes of the type trans-(NHC)2PtII(CC-Ar)2, where CC-Ar is an arylacetylide. By using femtosecond transient absorption spectroscopy, two dynamic processes are observed: an ultrafast singlet → triplet intersystem crossing (<0.3 ps), followed by geometric/electronic relaxation that takes place on a 2-10 ps time scale. The geometric/electronic relaxation is attributed to ligand torsional modes, mainly arising from twisting of the aryl units relative to the square-planar PtL4 unit. The dynamics of this relaxation process depend somewhat on steric constraints induced by substituent groups attached to the (benz)imidazole and phenyl ligands. The geometric relaxation dynamics slow with increasing solvent viscosity. The experimental studies also reveal that the different conformers can be photoselected by varying the excitation at different near-UV wavelengths. To corroborate the experimental findings, density functional theory calculations were conducted to probe the effects of geometry and steric hindrance on the ground-state energy surface. The calculations suggest that the barrier for torsion of the CC-Ar units increases as N-substituents on the NHC ligands increase in the order CH3 < cyclohexyl < n-butyl and as the CC-Ar units are substituted in the 3 and 5 positions with tert-butyl groups.

18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(2): 222-228, 2021 Mar.
Artículo en Zh | MEDLINE | ID: mdl-33829695

RESUMEN

OBJECTIVE: The purpose of this study was to investigate the protective effect of astragaloside Ⅳ (AS-Ⅳ) on neonatal rats' hypoxic/reoxygenated (H/R) injured myocardial cells and to explore its underlying mechanism. METHODS: Cardiac cells were extracted from newborn rats and divided into control, H/R, H/R-low AS-Ⅳ (0.1 µmol/L AS-Ⅳ), H/R-medium AS-Ⅳ (1 µmol/L AS-Ⅳ), H/R-high AS-Ⅳ (10 µmol/L AS-Ⅳ) and H/R-high AS-Ⅳ-AKT (10 µmol/L AS-Ⅳ+5 µmol/L AKT) groups. After 48 h of treatment, the contents of LC3-Ⅱ, p62, AKT, pAKT, rapamycin (mTOR) mammalian targets and uncoordinated 51-like kinase 1 (ULK1) in cardiac myocytes were compared. Immunofluorescence staining was used to detect the expression of P62 in myocardium autophagosome. RESTULTS: AS-Ⅳ improved the proliferative activity of cardio AS-Ⅳ improved the proliferative activity of cardiomyocytes in H/R injury in a dose-dependent manner and inhibited the level of cell autophagy. However, when AKT inhibitors were added, the effect of AS-Ⅳ was partially inhibited ( P<0.05). Gene and protein expression showed that AS-Ⅳ had no significant effect on the expression of AKT and mTOR genes ( P>0.05), but could significantly promote the phosphorylation of AKT and mTOR ( P<0.05). Immunofluorescence staining results showed that high concentrations of the AS - Ⅳ can reverse H/R injury induced the expression of autophagy body P62. CONCLUSION: AS-Ⅳ showed protection effect on H/R injured myocardial cells. The possible mechanism is by reducing the autophagy level via activating the mTOR signal in the PI3K/AKT pathway, thereby preventing H/R damage in neonatal rat cardiomyocytes.


Asunto(s)
Infarto del Miocardio , Fosfatidilinositol 3-Quinasas , Animales , Apoptosis , Autofagia , Infarto del Miocardio/tratamiento farmacológico , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Saponinas , Transducción de Señal , Triterpenos
19.
J Am Chem Soc ; 142(28): 12478-12485, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32551570

RESUMEN

A microporous three-dimensional (3D) hydrogen-bonded organic framework (HOF-20) has been constructed from an aromatic-rich tetratopic carboxylic acid, 5-(2,6-bis(4-carboxyphenyl)pyridin-4-yl)isophthalic acid (H4BCPIA). The activated HOF-20a has a moderately high Brunauer-Emmett-Teller (BET) surface area of 1323 m2 g-1 and excellent stability in water and HCl aqueous solution. HOF-20 exhibits highly efficient turn-up fluorescent sensing of aniline in water with a detection limit of 2.24 µM and is selective toward aniline in the presence of aromatic interferents, owing to the hydrogen bonding and edge-to-face π-π stacking interactions between the HOF-20 host and the guest aniline molecules, as demonstrated in the single-crystal X-ray structure of HOF-20⊃aniline. Density functional theory (DFT) calculations further demonstrate that the recognition of aniline molecules by HOF-20 could restrict the rotation of the aromatic rings in H4BCPIA linkers, reducing the nonradiative decay pathways upon photoexcitation and subsequently enhancing the fluorescence intensity.


Asunto(s)
Compuestos de Anilina/análisis , Ácidos Carboxílicos/química , Colorantes Fluorescentes/química , Contaminantes Químicos del Agua/análisis , Ácidos Carboxílicos/síntesis química , Teoría Funcional de la Densidad , Colorantes Fluorescentes/síntesis química , Enlace de Hidrógeno , Estructura Molecular , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
20.
J Am Chem Soc ; 142(3): 1603-1613, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31899630

RESUMEN

Boronic acids are centrally important functional motifs and synthetic precursors. Visible light-induced borylation may provide access to structurally diverse boronates, but a broadly efficient photocatalytic borylation method that can effect borylation of a wide range of substrates, including strong C-O bonds, remains elusive. Herein, we report a general, metal-free visible light-induced photocatalytic borylation platform that enables borylation of electron-rich derivatives of phenols and anilines, chloroarenes, as well as other haloarenes. The reaction exhibits excellent functional group tolerance, as demonstrated by the borylation of a range of structurally complex substrates. Remarkably, the reaction is catalyzed by phenothiazine, a simple organic photocatalyst with MW < 200 that mediates the previously unachievable visible light-induced single electron reduction of phenol derivatives with reduction potentials as negative as approximately - 3 V versus SCE by a proton-coupled electron transfer mechanism. Mechanistic studies point to the crucial role of the photocatalyst-base interaction.


Asunto(s)
Ácidos Borónicos/química , Carbono/química , Luz , Nitrógeno/química , Oxígeno/química , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA