Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(9): 2040-2040.e1, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37116474

RESUMEN

Farmed mammals may act as hosts for zoonotic viruses that can cause disease outbreaks in humans. This SnapShot shows which farmed mammals, and to what extent, are of particular risk of harboring and spreading viruses from viral families that are commonly associated with zoonotic disease. It also discusses genome surveillance methods and biosafety measures. To view this SnapShot, open or download the PDF.


Asunto(s)
Virus , Zoonosis , Animales , Humanos , Mamíferos , Brotes de Enfermedades , Medición de Riesgo
2.
Cell ; 185(7): 1117-1129.e8, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35298912

RESUMEN

Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Asunto(s)
Animales Salvajes/virología , Enfermedades Transmisibles Emergentes/virología , Reservorios de Enfermedades , Mamíferos/virología , Viroma , Animales , China , Filogenia , Zoonosis
3.
Nat Immunol ; 23(6): 960-970, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35654851

RESUMEN

The emergence of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy. Development of broadly effective coronavirus vaccines that can mitigate these threats is needed. Here, we utilized a targeted donor selection strategy to isolate a large panel of human broadly neutralizing antibodies (bnAbs) to sarbecoviruses. Many of these bnAbs are remarkably effective in neutralizing a diversity of sarbecoviruses and against most SARS-CoV-2 VOCs, including the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor-binding domain (RBD). Consistent with targeting of conserved sites, select RBD bnAbs exhibited protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model in vivo. These bnAbs provide new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and provide a molecular basis for effective design of pan-sarbecovirus vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , COVID-19/prevención & control , Humanos , Glicoproteína de la Espiga del Coronavirus
4.
Immunity ; 56(3): 669-686.e7, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36889306

RESUMEN

Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against novel pandemic coronaviruses and to more effectively respond to SARS-CoV-2 variants. The emergence of Omicron and subvariants of SARS-CoV-2 illustrates the limitations of solely targeting the receptor-binding domain (RBD) of the spike (S) protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors, which targets a conserved S2 region in the betacoronavirus spike fusion machinery. Select bnAbs showed broad in vivo protection against all three deadly betacoronaviruses, SARS-CoV-1, SARS-CoV-2, and MERS-CoV, which have spilled over into humans in the past two decades. Structural studies of these bnAbs delineated the molecular basis for their broad reactivity and revealed common antibody features targetable by broad vaccination strategies. These bnAbs provide new insights and opportunities for antibody-based interventions and for developing pan-betacoronavirus vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos ampliamente neutralizantes , Anticuerpos Neutralizantes , Anticuerpos Antivirales
5.
Nature ; 634(8032): 228-233, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232170

RESUMEN

Animals such as raccoon dogs, mink and muskrats are farmed for fur and are sometimes used as food or medicinal products1,2, yet they are also potential reservoirs of emerging pathogens3. Here we performed single-sample metatranscriptomic sequencing of internal tissues from 461 individual fur animals that were found dead due to disease. We characterized 125 virus species, including 36 that were novel and 39 at potentially high risk of cross-species transmission, including zoonotic spillover. Notably, we identified seven species of coronaviruses, expanding their known host range, and documented the cross-species transmission of a novel canine respiratory coronavirus to raccoon dogs and of bat HKU5-like coronaviruses to mink, present at a high abundance in lung tissues. Three subtypes of influenza A virus-H1N2, H5N6 and H6N2-were detected in the lungs of guinea pig, mink and muskrat, respectively. Multiple known zoonotic viruses, such as Japanese encephalitis virus and mammalian orthoreovirus4,5, were detected in guinea pigs. Raccoon dogs and mink carried the highest number of potentially high-risk viruses, while viruses from the Coronaviridae, Paramyxoviridae and Sedoreoviridae families commonly infected multiple hosts. These data also reveal potential virus transmission between farmed animals and wild animals, and from humans to farmed animals, indicating that fur farming represents an important transmission hub for viral zoonoses.


Asunto(s)
Pelaje de Animal , Animales Domésticos , Animales Salvajes , Reservorios de Enfermedades , Especificidad del Huésped , Zoonosis Virales , Animales , Perros , Cobayas , Humanos , Animales Domésticos/virología , Animales Salvajes/virología , Arvicolinae/virología , Quirópteros/virología , Coronavirus/aislamiento & purificación , Coronavirus/genética , Coronavirus/clasificación , Reservorios de Enfermedades/virología , Reservorios de Enfermedades/veterinaria , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Pulmón/virología , Visón/virología , Orthoreovirus/genética , Orthoreovirus/aislamiento & purificación , Filogenia , Perros Mapache/virología , Zoonosis Virales/transmisión , Zoonosis Virales/virología
6.
Proc Natl Acad Sci U S A ; 119(29): e2205784119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35767670

RESUMEN

Many neutralizing antibodies (nAbs) elicited to ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through natural infection and vaccination have reduced effectiveness to SARS-CoV-2 variants. Here, we show that therapeutic antibody ADG20 is able to neutralize SARS-CoV-2 variants of concern (VOCs) including Omicron (B.1.1.529) as well as other SARS-related coronaviruses. We delineate the structural basis of this relatively escape-resistant epitope that extends from one end of the receptor binding site (RBS) into the highly conserved CR3022 site. ADG20 can then benefit from high potency through direct competition with ACE2 in the more variable RBS and interaction with the more highly conserved CR3022 site. Importantly, antibodies that are able to target this site generally neutralize a broad range of VOCs, albeit with reduced potency against Omicron. Thus, this conserved and vulnerable site can be exploited for the design of universal vaccines and therapeutic antibodies.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Epítopos/inmunología , Humanos , Pruebas de Neutralización , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
7.
J Virol ; 97(1): e0109122, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36475767

RESUMEN

Getah virus (GETV) mainly causes disease in livestock and may pose an epidemic risk due to its expanding host range and the potential of long-distance dispersal through animal trade. Here, we used metagenomic next-generation sequencing (mNGS) to identify GETV as the pathogen responsible for reemerging swine disease in China and subsequently estimated key epidemiological parameters using phylodynamic and spatially-explicit phylogeographic approaches. The GETV isolates were able to replicate in a variety of cell lines, including human cells, and showed high pathogenicity in a mouse model, suggesting the potential for more mammal hosts. We obtained 16 complete genomes and 79 E2 gene sequences from viral strains collected in China from 2016 to 2021 through large-scale surveillance among livestock, pets, and mosquitoes. Our phylogenetic analysis revealed that three major GETV lineages are responsible for the current epidemic in livestock in China. We identified three potential positively selected sites and mutations of interest in E2, which may impact the transmissibility and pathogenicity of the virus. Phylodynamic inference of the GETV demographic dynamics identified an association between livestock meat consumption and the evolution of viral genetic diversity. Finally, phylogeographic reconstruction of GETV dispersal indicated that the sampled lineages have preferentially circulated within areas associated with relatively higher mean annual temperature and pig population density. Our results highlight the importance of continuous surveillance of GETV among livestock in southern Chinese regions associated with relatively high temperatures. IMPORTANCE Although livestock is known to be the primary reservoir of Getah virus (GETV) in Asian countries, where identification is largely based on serology, the evolutionary history and spatial epidemiology of GETV in these regions remain largely unknown. Through our sequencing efforts, we provided robust support for lineage delineation of GETV and identified three major lineages that are responsible for the current epidemic in livestock in China. We further analyzed genomic and epidemiological data to reconstruct the recent demographic and dispersal history of GETV in domestic animals in China and to explore the impact of environmental factors on its genetic diversity and its diffusion. Notably, except for livestock meat consumption, other pig-related factors such as the evolution of live pig transport and pork production do not show a significant association with the evolution of viral genetic diversity, pointing out that further studies should investigate the potential contribution of other host species to the GETV outbreak. Our analysis of GETV demonstrates the need for wider animal species surveillance and provides a baseline for future studies of the molecular epidemiology and early warning of emerging arboviruses in China.


Asunto(s)
Arbovirus , Genoma Viral , Filogenia , Animales , Humanos , Ratones , Arbovirus/genética , China/epidemiología , Genómica , Ganado/virología
8.
Clin Proteomics ; 21(1): 27, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580967

RESUMEN

BACKGROUND: Colorectal Cancer (CRC) is a prevalent form of cancer, and the effectiveness of the main postoperative chemotherapy treatment, FOLFOX, varies among patients. In this study, we aimed to identify potential biomarkers for predicting the prognosis of CRC patients treated with FOLFOX through plasma proteomic characterization. METHODS: Using a fully integrated sample preparation technology SISPROT-based proteomics workflow, we achieved deep proteome coverage and trained a machine learning model from a discovery cohort of 90 CRC patients to differentiate FOLFOX-sensitive and FOLFOX-resistant patients. The model was then validated by targeted proteomics on an independent test cohort of 26 patients. RESULTS: We achieved deep proteome coverage of 831 protein groups in total and 536 protein groups in average for non-depleted plasma from CRC patients by using a Orbitrap Exploris 240 with moderate sensitivity. Our results revealed distinct molecular changes in FOLFOX-sensitive and FOLFOX-resistant patients. We confidently identified known prognostic biomarkers for colorectal cancer, such as S100A4, LGALS1, and FABP5. The classifier based on the biomarker panel demonstrated a promised AUC value of 0.908 with 93% accuracy. Additionally, we established a protein panel to predict FOLFOX effectiveness, and several proteins within the panel were validated using targeted proteomic methods. CONCLUSIONS: Our study sheds light on the pathways affected in CRC patients treated with FOLFOX chemotherapy and identifies potential biomarkers that could be valuable for prognosis prediction. Our findings showed the potential of mass spectrometry-based proteomics and machine learning as an unbiased and systematic approach for discovering biomarkers in CRC.

9.
J Gen Intern Med ; 39(9): 1721-1734, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38696026

RESUMEN

BACKGROUND: Very brief advice (VBA; ≤ 3 min) on quitting is practical and scalable during brief medical interactions with patients who smoke. This study aims to synthesize the effectiveness of VBA for smoking cessation and summarize the implementation strategies. METHODS: We searched randomized controlled trials aiming at tobacco abstinence and comparing VBA versus no smoking advice or no contact from Medline, Embase, CINAHL, Cochrane Library, PsycInfo databases, six Chinese databases, two trial registries ClinicalTrials.gov and WHO-ICTRP from inception to September 30, 2023. Grading of Recommendations, Assessment, Development, and Evaluations framework was used to assess the certainty of the evidence of the meta-analytic findings. The outcomes were self-reported long-term tobacco abstinence at least 6 months after treatment initiation, earlier than 6 months after treatment initiation, and quit attempts. Effect sizes were computed as risk ratio (RR) with 95% CI using frequentist random-effect models. DATA SYNTHESIS: Thirteen randomized controlled trials from 15 articles (n = 26,437) were included. There was moderate-certainty evidence that VBA significantly increased self-reported tobacco abstinence at ≥ 6 months in the adjusted model (adjusted risk ratio ARR 1.17, 95% CI: 1.07-1.27) compared with controls. The sensitivity analysis showed similar results when abstinence was verified by biochemical validation (n = 6 studies, RR 1.53, 95% CI 0.98-2.40). There was high-certainty evidence that VBA significantly increased abstinence at < 6 months (ARR 1.22, 95% CI: 1.01-1.47). Evidence of effect on quit attempts (ARR 1.03, 95% CI 0.97-1.08) was of very low certainty. DISCUSSION: VBA delivered in a clinical setting is effective in increasing self-reported tobacco abstinence, which provides support for wider adoption in clinical practice.


Asunto(s)
Cese del Hábito de Fumar , Humanos , Cese del Hábito de Fumar/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Cese del Uso de Tabaco/métodos , Consejo/métodos , Resultado del Tratamiento
10.
Clin Exp Nephrol ; 28(4): 325-336, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38151608

RESUMEN

BACKGROUND: The AHA has recently introduced a novel metric, Life's Essential 8, to assess cardiovascular health (CVH). Nevertheless, the association between varying levels of LE8 and the propensity for CKD is still unclear from a large prospective cohort. Our objective is to meticulously examine the relationship between LE8 and its associated susceptibilities to CKD. METHODS: A total of 251,825 participants free of CKD from the UK Biobank were included. Cardiovascular health was scored using LE8 and categorized as low, moderate, and high. Cox proportional hazard models were employed to evaluate the associations of LE8 scores with new-onset CKD. The genetic risk score for CKD was calculated by a weighted method. RESULTS: Over a median follow-up of 12.8 years, we meticulously documented 10,124 incident cases of CKD. Remarkably, an increased LE8 score correlated with a significant reduction of risk in new-onset CKD (high LE8 score vs. low LE8 score: HR = 0.300, 95% CI 0.270-0.330, p < 0.001; median LE8 score vs. low LE8 score: HR = 0.531, 95% CI 0.487-0.580, p < 0.001). This strong LE8-CKD association remained robust in extensive subgroup assessments and sensitivity analysis. Additionally, these noteworthy associations between LE8 scores and CKD remained unaffected by genetic predispositions to CKD. CONCLUSIONS: An elevated degree of CVH, as delineated by the discerning metric LE8, exhibited a pronounced and statistically significant correlation with a marked reduction in the likelihood of CKD occurrence.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Renal Crónica , Humanos , Estados Unidos , Biobanco del Reino Unido , Bancos de Muestras Biológicas , Estudios Prospectivos , Predisposición Genética a la Enfermedad , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética , Factores de Riesgo
11.
Sensors (Basel) ; 24(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000907

RESUMEN

With the rapid development of fully automatic operation (FAO) and location-based services, the evaluation criteria of average localization accuracy can no longer meet our demands, in favor of deterministic localization. However, most localization researches modeled localization performance function and enhanced it by minimizing average localization root mean square error (RMSE). The performance degradation in a small region was not considered. In this paper, we present a survey of deterministic localization and analyze the relationship between accuracy and certainty. In this paper, two common solutions of localization enhancement are presented and their localization certainties are discussed. Furthermore, we carry out related localization enhancement experiments in rail transit line and analyze their improvement on deterministic localization. The experimental results show that the overall localization performance is improved, while the deterministic localization requires the stricter solution to promote.

12.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34951645

RESUMEN

The ongoing SARS (severe acute respiratory syndrome)-CoV (coronavirus)-2 pandemic has exposed major gaps in our knowledge on the origin, ecology, evolution, and spread of animal coronaviruses. Porcine epidemic diarrhea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae that may have originated from bats and leads to significant hazards and widespread epidemics in the swine population. The role of local and global trade of live swine and swine-related products in disseminating PEDV remains unclear, especially in developing countries with complex swine production systems. Here, we undertake an in-depth phylogeographic analysis of PEDV sequence data (including 247 newly sequenced samples) and employ an extension of this inference framework that enables formally testing the contribution of a range of predictor variables to the geographic spread of PEDV. Within China, the provinces of Guangdong and Henan were identified as primary hubs for the spread of PEDV, for which we estimate live swine trade to play a very important role. On a global scale, the United States and China maintain the highest number of PEDV lineages. We estimate that, after an initial introduction out of China, the United States acted as an important source of PEDV introductions into Japan, Korea, China, and Mexico. Live swine trade also explains the dispersal of PEDV on a global scale. Given the increasingly global trade of live swine, our findings have important implications for designing prevention and containment measures to combat a wide range of livestock coronaviruses.


Asunto(s)
Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , China , Pandemias , Filogenia , Filogeografía , Virus de la Diarrea Epidémica Porcina/genética , Porcinos , Enfermedades de los Porcinos/epidemiología , Estados Unidos
13.
J Virol ; 96(6): e0175121, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-34986000

RESUMEN

The emergence of new epidemic variants of alphaviruses poses a public health risk. It is associated with adaptive mutations that often cause increased pathogenicity. Getah virus (GETV), a neglected and re-emerging mosquito-borne alphavirus, poses threat to many domestic animals and probably even humans. At present, the underlying mechanisms of GETV pathogenesis are not well defined. We identified a residue in the E2 glycoprotein that is critical for viral adsorption to cultured cells and pathogenesis in vivo. Viruses containing an arginine instead of a lysine at residue 253 displayed enhanced infectivity in mammalian cells and diminished virulence in a mouse model of GETV disease. Experiments in cell culture show that heparan sulfate (HS) is a new attachment factor for GETV, and the exchange Lys253Arg improves virus attachment by enhancing binding to HS. The mutation also results in more effective binding to glycosaminoglycan (GAG), linked to low virulence due to rapid virus clearance from the circulation. Localization of residue 253 in the three-dimensional structure of the spike revealed several other basic residues in E2 and E1 in close vicinity that might constitute an HS-binding site different from sites previously identified in other alphaviruses. Overall, our study reveals that HS acts as the attachment factor of GETV and provides convincing evidence for an HS-binding determinant at residue 253 in the E2 glycoprotein of GETV, which contributes to infectivity and virulence. IMPORTANCE Due to decades of inadequate monitoring and lack of vaccines and specific treatment, a large number of people have been infected with alphaviruses. GETV is a re-emerging alphavirus that has the potential to infect humans. This specificity of the GETV disease, particularly its propensity for chronic musculoskeletal manifestations, underscores the need to identify the genetic determinants that govern GETV virulence in the host. Using a mouse model, we show that a single amino acid substitution at residue 253 in the E2 glycoprotein causes attenuation of the virus. Residue 253 might be part of a binding site for HS, a ubiquitous attachment factor on the cell surface. The substitution of Lys by Arg improves cell attachment of the virus in vitro and virus clearance from the blood in vivo by enhancing binding to HS. In summary, we have identified HS as a new attachment factor for GETV and the corresponding binding site in the E2 protein for the first time. Our research potentially improved understanding of the pathogenic mechanism of GETV and provided a potential target for the development of new attenuated vaccines and antiviral drugs.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Sustitución de Aminoácidos , Proteínas del Envoltorio Viral , Alphavirus/genética , Alphavirus/patogenicidad , Infecciones por Alphavirus/virología , Animales , Sitios de Unión/genética , Células Cultivadas , Modelos Animales de Enfermedad , Heparitina Sulfato/metabolismo , Humanos , Ratones , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
14.
J Immunol ; 207(1): 344-351, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34183368

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike pseudotyped virus (PSV) assays are widely used to measure neutralization titers of sera and of isolated neutralizing Abs (nAbs). PSV neutralization assays are safer than live virus neutralization assays and do not require access to biosafety level 3 laboratories. However, many PSV assays are nevertheless somewhat challenging and require at least 2 d to carry out. In this study, we report a rapid (<30 min), sensitive, cell-free, off-the-shelf, and accurate assay for receptor binding domain nAb detection. Our proximity-based luciferase assay takes advantage of the fact that the most potent SARS-CoV-2 nAbs function by blocking the binding between SARS-CoV-2 and angiotensin-converting enzyme 2. The method was validated using isolated nAbs and sera from spike-immunized animals and patients with coronavirus disease 2019. The method was particularly useful in patients with HIV taking antiretroviral therapies that interfere with the conventional PSV assay. The method provides a cost-effective and point-of-care alternative to evaluate the potency and breadth of the predominant SARS-CoV-2 nAbs elicited by infection or vaccines.


Asunto(s)
Anticuerpos Neutralizantes/análisis , Pruebas de Neutralización , SARS-CoV-2/aislamiento & purificación , Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Neutralizantes/inmunología , Estudios de Cohortes , Humanos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
15.
Molecules ; 28(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36903502

RESUMEN

In this paper, based on high-throughput technology, polymer dispersed liquid crystals (PDLC) composed of pentaerythritol tetra (2-mercaptoacetic acid) (PETMP), trimethylolpropane triacrylate (TMPTA), and polyethylene glycol diacrylate (PEGD 600) were investigated in detail. A total of 125 PDLC samples with different ratios were quickly prepared using ink-jet printing. Based on the method of machine vision to identify the grayscale level of samples, as far as we know, it is the first time to realize high-throughput detection of the electro-optical performance of PDLC samples, which can quickly screen out the lowest saturation voltage of batch samples. Additionally, we compared the electro-optical test results of manual and high-throughput preparation PDLC samples and discovered that they had very similar electro-optical characteristics and morphologies. This demonstrated the viability of PDLC sample high-throughput preparation and detection, as well as promising application prospects, and significantly increased the efficiency of PDLC sample preparation and detection. The results of this study will contribute to the research and application of PDLC composites in the future.

16.
Phys Rev Lett ; 129(7): 070502, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36018707

RESUMEN

In open quantum systems, the precision of metrology inevitably suffers from the noise. In Markovian open quantum dynamics, the precision can not be improved by using entangled probes although the measurement time is effectively shortened. However, it was predicted over one decade ago that in a non-Markovian one, the error can be significantly reduced by the quantum Zeno effect (QZE) [Chin, Huelga, and Plenio, Phys. Rev. Lett. 109, 233601 (2012)PRLTAO0031-900710.1103/PhysRevLett.109.233601]. In this work, we apply a recently developed quantum simulation approach to experimentally verify that entangled probes can improve the precision of metrology by the QZE. Up to n=7 qubits, we demonstrate that the precision has been improved by a factor of n^{1/4}, which is consistent with the theoretical prediction. Our quantum simulation approach may provide an intriguing platform for experimental verification of various quantum metrology schemes.

17.
Biomacromolecules ; 23(4): 1680-1692, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35258295

RESUMEN

Programing self-assembly of naturally bioactive molecules has been a wide topic of great significance for biomedical uses. Despite the fact that plant-derived polyphenols with catechol or pyrogallol moieties have been widely studied to construct nanocomplexes or nanocoatings via self-polymerization, there is no report on the self-assembly of these polyphenols into therapeutic hydrogels for potential applications. Here, we reported that adding a very small amount of resveratrol (Res) into the gallic acid (GA) aqueous solution could trigger the quick self-assembly of GA to form a fibrous hydrogel within 5 min through hydrogen bonds and π-π interactions. The length of GA/Res (GR) fibrils in gels varied from 100 to 1000 microns, with a diameter of around 1 µm. Notably, these GR hydrogels showed excellent colloid stability, providing better slow release and outstanding biocompatibility. Also, in vivo experiments indicated the hydrogels had high antibacterial effects and excellent wound healing capabilities in a total skin defect model via regulating the expression of inflammatory factors (IL-6, IL-1ß, and TNF-α) due to the release of therapeutic agents (GA and Res) into the matrix. Overall, our results provide a new strategy to accelerate self-assembly of GA by adding Res to form hydrogels, which is further proved as a promising therapeutic carrier for wound healing.


Asunto(s)
Ácido Gálico , Hidrogeles , Antibacterianos/farmacología , Ácido Gálico/química , Ácido Gálico/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Polifenoles , Resveratrol/farmacología , Cicatrización de Heridas
18.
Cell Biol Int ; 46(9): 1345-1354, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35830696

RESUMEN

The respiratory system is always exposed to air and is most vulnerable to attack by environmental free radicals. The nuclear factor E2-related factor 2-Kelch-like ECH-associated protein 1-antioxidant response element (Nrf2-Keap1-ARE) pathway and p62 are both involved in the oxidative stress response. However, the interplay between these two systems remains largely unknown. This study shows that treatment of L2 cells with tert-Butylhydroquinone (tBHQ) generates a high-molecular-weight (HMW) form of p62, leading to activation of the Nrf2-Keap1-ARE pathway. The levels of HMW-p62 increased as the tBHQ concentration increased, with concomitant decreases seen in the classical form of p62. Moreover, small interfering RNA targeting p62 increases Keap1 protein levels and inactivates the Nrf2-Keap1-ARE pathway. These results demonstrate that the Nrf2-Keap1 pathway is partially regulated by p62. tBHQ-induced HMW-p62 production may be a novel mechanism in the activation of the Nrf2-Keap1-ARE pathway.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Transducción de Señal , Hidroquinonas/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Proteína Sequestosoma-1/metabolismo
19.
BMC Vet Res ; 18(1): 143, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35439995

RESUMEN

BACKGROUND: Neuromedin U (NMU) plays an important role in activating the group 2 innate lymphoid cells (ILC2s) and initiating the host's anti-parasitic immune responses. It is aimed to explore the distribution characteristics of NMU in the sheep small intestine and the influence of Moniezia benedeni infection on them. In the present study, the pET-28a-NMU recombinant plasmids were constructed, and Escherichia coli. BL21 (DE3) were induced to express the recombinant protein. And then, the rabbit anti-sheep NMU polyclonal antibody was prepared and immunofluorescence staining was performed with it. The expression levels of NMU in the intestine of normal and Moniezia benedeni-infected sheep were detected by ELISA. RESULTS: The results showed that the molecular weight of the obtained NMU recombinant protein was consistent with the expected molecular (13 kDa) and it was expressed in the form of inclusion body. The titer and specificity of obtained rabbit anti-sheep NMU polyclonal antibody were good. The results of immunofluorescence analysis showed that the nerve fibers which specifically expressed NMU mainly extended from the ganglion in the submucosal to lamina propria (LP) in the sheep small intestine, and the expression level was relatively high; especially on the nerve fibers of LP around the intestinal glands. The expression levels were gradually increased from the duodenum to the ileum, and the levels in the jejunum and ileum were significantly higher than that in the duodenum (P < 0.05). In addition, scattered NMU positive cells were distributed in the epithelium of the jejunal crypts. Moniezia benedeni infection increased the expression of NMU in each intestinal segment, especially in the jejunum and ileum there were significant increase (P < 0.05). CONCLUSIONS: It was suggested that Moniezia benedeni infection could be detected by the high expression of NMU in sheep enteric nervous, and which laid the foundation for further studies on whether NMU exerts anti-parasitic immunity by activating ILC2s. In addition, NMU was expressed in some intestinal gland epitheliums, which also provided a basis for studying its roles in regulation of the immune homeostasis. The present study laid the foundation for further revealing the molecular mechanism of sheep's neural-immune interaction network perceiving the colacobiosis of parasites.


Asunto(s)
Cestodos , Inmunidad Innata , Animales , Inmunidad Innata/genética , Intestino Delgado , Linfocitos , Neuropéptidos , Conejos , Proteínas Recombinantes , Ovinos , Oveja Doméstica
20.
Clin Lab ; 68(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35023686

RESUMEN

BACKGROUND: Chemotherapy is a clinically recognized effective technique for systemic treatment of malignant tumors. However, the tumor heterogeneity and multiple drug resistance (MDR) to the chemotherapeutic agents often lead to a failure of response to chemotherapy. We utilized a novel in vitro chemosensitivity test to identify sensitive and effective chemotherapeutic drugs and further elucidated the correlation between the in vitro chemosensitivity and clinical outcomes. MATERIALS AND METHODS: We developed a circulating tumor cell-based in vitro drug sensitivity test to evaluate the sensitivity of different chemotherapeutic agents. High glucose uptake combined with negative CD45 marker were exploited to distinguish the CTCs from leukocytes. The altered glucose metabolism of single cell was measured by custom-designed computational algorithm, and the toxicity of different drug combinations was assessed by different fluorescent intensity on CTCs in the treated and control group. RESULTS: We analyzed the potential of CTCs in predicting chemotherapy response in 92 patients with different cancer types. Our data showed that the isolated CTCs accurately predicted chemotherapy outcomes, especially in patients with late-stage cancer. CTC-based chemosensitivity evaluation can help guide clinical decision making and identify patients who are likely to benefit from chemotherapy. CONCLUSIONS: CTC-based chemosensitivity evaluation is an effective methodology to study the chemosensitivity of tumor cells in vitro. Our results using CTC-based chemosensitivity evaluation method were well correlated with the clinical outcomes of chemotherapy. The clinical implementation of our CTC-based chemosensitivity evaluation method can help spare patients with primary chemoresistance from the unnecessary toxicities of chemotherapy and improve chemotherapy outcomes.


Asunto(s)
Antineoplásicos , Células Neoplásicas Circulantes , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor , Recuento de Células , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA