Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 22(6): 2419-2428, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35254834

RESUMEN

Antibody-based therapeutics, which induce apoptosis of malignant cells by selectively binding to their receptors, hold tremendous promise for clinical cancer therapy. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has received considerable interest due to its favorable capability of activating apoptosis in cancer cells by interacting with death receptors (DRs). However, cancer stem-like cells (CSCs) show deficient or lower DR and are highly resistant to TRAIL-mediated apoptosis limiting the therapeutic efficacy. Here, we report a liposome-mediated acclimatization strategy to overcome the CSC-emanated TRAIL resistance. The liposomal assemblies coencapsulating plasmid DNA encoding TRAIL and salinomycin enable cancer cells as protein generators to express TRAIL, and more importantly, can acclimatize resistant CSCs to be sensitized to the TRAIL-triggered apoptosis by salinomycin-induced upregulation of DR expression on CSCs. This programmable liposome-based drug codelivery system shows the potential to efficiently eliminate CSCs and inhibit CSC-enriched tumor growth in the orthotopic colon tumor mouse model.


Asunto(s)
Liposomas , Neoplasias , Aclimatación , Animales , Apoptosis , Línea Celular Tumoral , Liposomas/metabolismo , Ratones , Neoplasias/patología , Células Madre Neoplásicas , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF
2.
Biotechnol Appl Biochem ; 69(6): 2486-2495, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34894362

RESUMEN

Microbial transglutaminase (MTG, EC 2.3.2.13) derived from Streptomyces mobaraensis is widely used in the food and pharmaceutical industry because of its ability to synthesize isopeptide bonds between the proteinogenic side chains of glutamine and lysine. The half-life (t1/2 ) of the activated wild-type enzyme at 60°C is 2 min. To improve the activity and thermostability of MTG for higher temperature application, three variants (Mut1, Mut2, and Mut3) were obtained by combining key amino acid mutations on the basis of previous research results. The best variant Mut2 with a specific combination of five of seven substitutions (S2P-S23V-Y24N-R215A-H289Y) shows a 10-fold increased half-life at 60°C (t1/2  = 27.6 min), and a 2.4-fold increased specific enzyme activity (39.3 U/mg). As measured by circular dichroism, the curve of Mut2 was basically the same as that of MTG-WT. The structural simulation of Mut2 shows that the overall structure is discoid with a crack, but the crack openings are wider than that of MTG-WT. Furthermore, structural analysis of Mut2 showed that there were seven hydrogen bonds and one π-anion interaction between Mut2 and its adjacent amino acids, and the number of hydrogen bonds was one more than that of MTG-WT (six hydrogen bonds).


Asunto(s)
Calor , Transglutaminasas , Transglutaminasas/genética , Transglutaminasas/química , Transglutaminasas/metabolismo , Mutación , Semivida
3.
Biomater Sci ; 10(15): 4356-4366, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35786722

RESUMEN

Hepatitis B represents a major global public health burden, which is caused by the hepatitis B virus (HBV) with a high infection rate. Although several anti-HBV drugs have been developed for clinical treatment of hepatitis B, the current therapeutic strategies still suffer from undeniable adverse effects, insufficient efficacy after systemic administration and chronic inflammation. Here, we develop a carrier-free metal-organic hybrid nanoassembly that is co-loaded with tenofovir (TFV), an anti-viral agent and phosphorylated glycyrrhetinic acid (GAP), an anti-inflammatory compound (TFV/GAP/NA) to enhance the anti-HBV effect and alleviate the inflammatory response for hepatitis B treatment. The nanoassembly is easily prepared through the ionic interactions between the anionic phosphonate/phosphate groups from TFV/GAP and the zirconium cation, which has a stable nanostructure and a high drug-loading capacity. The nanoassembly prolongs the circulation time with reduced drug leakage in the blood and elevates drug accumulation in the liver after intravascular administration. After internalization mediated by the GAP ligand-GA receptor interaction, TFV/GAP/NA disassembles by the phosphatase-triggered degradation of the phosphate ester bonds in GAP and releases TFV, GAP and GA within the HBV-positive hepatocytes. The released TFV interferes with the HBV polymerase to inhibit the viral DNA replication, while the released GAP and GA suppress the pro-inflammatory protein expression. In mouse models, treatment with TFV/GAP/NA inhibits HBV production and alleviates inflammation-mediated liver injury.


Asunto(s)
Antivirales , Hepatitis B , Adenina/farmacología , Animales , Antivirales/farmacología , Replicación del ADN , ADN Viral/farmacología , ADN Viral/uso terapéutico , Hepatitis B/tratamiento farmacológico , Virus de la Hepatitis B/metabolismo , Inflamación/tratamiento farmacológico , Ratones , Organofosfatos , Fosfatos , Tenofovir/farmacología , Tenofovir/uso terapéutico , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA