Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 59(7): 4711-4719, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32191452

RESUMEN

High-capacity germanium-based anode materials are alternative materials for outstanding electrochemical performance lithium-ion batteries (LIBs), but severe volume variation and pulverization problems during charging-discharging processes can seriously affect their electrochemical performance. In addressing this challenge, a simple strategy was used to prepare the self-assembled GeOX/Ti3C2TX composite in which the GeOX nanoparticles can grow directly on Ti3C2TX layers. Nanoscale GeOX uniformly renucleates on the surface and interlayers of Ti3C2TX, forming the stable multiphase structure, which guarantees its excellent electrochemical performance. Electrochemical evaluation has shown that the rate capability and reversibility of GeOX/Ti3C2TX are both greatly improved, which delivers a reversible discharge specific capacity of above 1400 mAh g-1 (at 100 mA g-1) and a reversible specific capacity of 900 mAh g-1 after 50 cycles while it still maintains a stable specific capacity of 725 mAh g-1 at 5000 mA g-1. Furthermore, the composite exhibits an exceptionally superior rate capability, making it a good electrochemical performance anode for LIBs.

2.
Inorg Chem ; 58(12): 8169-8178, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31141354

RESUMEN

MoSe2 is a prospective anode material for Na-ion batteries because of its layered structure and high theoretical capacity, while the unsatisfied electrochemical performance limits its further development. Herein, we report MoSe2 nanosheets anchored on dual-heteroatoms functionalized graphene by a solvothermal method. The heteroatoms and carbon matrix coexist in the form of graphitic-N/pyridinic-N/pyrrolic-N and P-C/P═O bonds, which result in excellent electronic conductivity of the materials and provide abundant active sites for electrochemical process. Results indicated that organic intercalation increased the layer spacing of the materials to facilitate sodium-ion diffusion, and the in situ formed carbon networks improved the conductivity among the layers of the materials and alleviated volume expansion during the continued charge and discharge process. As an anode of Na-ion batteries, the nanosheets materials exhibited ultrahigh rate performance and deliver capacities of approximately 200 mAh g-1 at the current density of 10 A g-1. The ultrahigh-rate performance can be attributed to its unique nanosheets structure, the dual-heteroatoms functionalized graphene, and the considerable pseudocapacitive quality of the material.

3.
Small Methods ; 6(12): e2201025, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36333217

RESUMEN

Rechargeable batteries are key in the field of electrochemical energy storage, and the development of advanced electrode materials is essential to meet the increasing demand of electrochemical energy storage devices with higher density of energy and power. Anode materials are the key components of batteries. However, the anode materials still suffer from several challenges such as low rate capability and poor cycling stability, limiting the development of high-energy and high-power batteries. In recent years, heterojunctions have received increasing attention from researchers as an emerging material, because the constructed heterostructures can significantly improve the rate capability and cycling stability of the materials. Although many research progress has been made in this field, it still lacks review articles that summarize this field in detail. Herein, this review presents the recent research progress of heterojunction-type anode materials, focusing on the application of various types of heterojunctions in lithium/sodium-ion batteries. Finally, the heterojunctions introduced in this review are summarized, and their future development is anticipated.

4.
ACS Appl Mater Interfaces ; 12(2): 2671-2678, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31899615

RESUMEN

Transition-metal sulfides have been considered as promising anode materials for lithium-ion batteries (LIBs) due to their high theoretical specific capacity and superior electrochemical performance. However, the large volume change during the discharge/charge process causes structural pulverization, resulting in rapid capacity decline and the loss of active materials. Herein, we report Co1-xS hollow spheres formed by in situ growth on reduced graphene oxide layers. When evaluated as an anode material for LIBs, it delivers a specific capacity of 969.8 mAh·g-1 with a high Coulombic efficiency of 96.49% after 90 cycles. Furthermore, a high reversible capacity of 527.2 mAh·g-1 after the 107th cycle at a current density of 2.5 A g-1 is still achieved. The results illustrate that in situ growth on the graphene layers can enhance conductivity and restrain volume expansion of cobalt sulfide compared with ex situ growth.

5.
ACS Appl Mater Interfaces ; 11(12): 11518-11526, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30817128

RESUMEN

Li-rich cathode materials are regarded as ideal cathode materials, owing to their excellent electrochemical capacity. However, residual lithium compounds, which are formed on the surface of the materials by reacting with moisture and carbon dioxide in ambient atmosphere, can impair the surface structure, injure the capacity, and impede the electrode fabrication using Li-rich materials. Exposure to air atmosphere causes the formation of residual lithium compounds; the formation of such compounds is believed to be related to humidity, temperature, and time during handling and storage. In this study, we demonstrated for the first time an artificial strategy for controlling time, temperature, and humidity to accelerate exposure. The formation and effect of residual lithium compounds on Li-rich cathode material Li1.35[Ni0.35Mn0.65]O2 were systematically investigated. The residual lithium compounds formed possessed primarily an amorphous structure and were partially coated on the surface. These compounds include LiOH, Li2O, and Li2CO3. Li2CO3 is the major component in residual lithium compounds. The presence of residual lithium compounds on the material surface led to a high discharge capacity loss and large discharge voltage fading. Understanding the formation and suppressing the effect of residual lithium compounds will help prevent their unfavorable effects and improve the electrochemical performance.

6.
Front Chem ; 6: 159, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868562

RESUMEN

Lithium-rich manganese-based cathode materials has been attracted enormous interests as one of the most promising candidates of cathode materials for next-generation lithium ion batteries because of its high theoretic capacity and low cost. In this study, 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 materials are synthesized through a solid-state reaction by using different lithium sources, and the synthesis process and the reaction mechanism are investigated in detail. The morphology, structure, and electrochemical performances of the material synthesized by using LiOH·H2O, Li2CO3, and CH3COOLi·2H2O have been analyzed by using Thermo gravimetric analysis (TGA), X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. The 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 material prepared by using LiOH·H2O displays uniform morphology with nano particle and stable layer structure so that it suppresses the first cycle irreversible reaction and structure transfer, and it delivers the best electrochemical performance. The results indicate that LiOH·H2O is the best choice for the synthesis of the 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 material.

7.
ACS Appl Mater Interfaces ; 10(37): 31324-31329, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30148344

RESUMEN

A multiple linkage modification (MLM) method was investigated to comprehensively improve the properties of lithium-rich layered oxides. MLM Li1.2Mn0.54Ni0.13Co0.13O2 was successfully synthesized via continuous and appropriate heat treatment. The synthesized Li1.2Mn0.54Ni0.13Co0.13O2 particles were coated with a Li2ZrO3 layer and doped with Zr4+ by using a Zr compound as the MLM reagent. The Li2ZrO3 coating layer could protect materials from the corrosion of hydrogen fluoride, and the structure of the base materials was stabilized due to Zr4+ doping. In addition, the formation of Li2ZrO3 captured inactive residual lithium on the surface and absorbed lithium of host materials, thereby leading to the reduction in the Li/M ratio of materials and promoting the first-cycle Coulombic efficiency. The MLM material delivered the highest initial cycle Coulombic efficiency (∼85%), the best cycle and rate performance among bare and ZrO2-coated particles. These results indicate that MLM is an important technique for improving the performance of electrode materials.

8.
ACS Appl Mater Interfaces ; 7(42): 23605-14, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26451678

RESUMEN

An electrolyte additive, p-toluenesulfonyl isocyanate (PTSI), is evaluated in our work to overcome the poor cycling performance of spinel lithium titanate (Li4Ti5O12) lithium-ion batteries. We find that the cycling performance of a Li/Li4Ti5O12 cell with 0.5 wt % PTSI after 400 cycles is obviously improved. Remarkably, we also find that a solid electrolyte interface (SEI) film is formed about 1.2 V, which has higher potential to generate a stable SEI film than do carbonate solvents in the voltage range of 3.0-0 V. The stable SEI film derived from PTSI can effectively suppress the decomposition of electrolyte, HF generation, interfacial reaction, and LiF formation upon cycling. These observations are explained in terms of PTSI including SO3. The S═O groups can delocalize the nitrogen core, which acts as the weak base site to hinder the reactivity of PF5. Hence, HF generation and LiF formation are suppressed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA