Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 602(14): 3351-3373, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38704841

RESUMEN

Ca2+ signalling plays a crucial role in determining lymphatic muscle cell excitability and contractility through its interaction with the Ca2+-activated Cl- channel anoctamin 1 (ANO1). In contrast, the large-conductance (BK) Ca2+-activated K+ channel (KCa) and other KCa channels have prominent vasodilatory actions by hyperpolarizing vascular smooth muscle cells. Here, we assessed the expression and contribution of the KCa family to mouse and rat lymphatic collecting vessel contractile function. The BK channel was the only KCa channel consistently expressed in fluorescence-activated cell sorting-purified mouse lymphatic muscle cell lymphatic muscle cells. We used a pharmacological inhibitor of BK channels, iberiotoxin, and small-conductance Ca2+-activated K+ channels, apamin, to inhibit KCa channels acutely in ex vivo isobaric myography experiments and intracellular membrane potential recordings. In basal conditions, BK channel inhibition had little to no effect on either mouse inguinal-axillary lymphatic vessel (MIALV) or rat mesenteric lymphatic vessel contractions or action potentials (APs). We also tested BK channel inhibition under loss of ANO1 either by genetic ablation (Myh11CreERT2-Ano1 fl/fl, Ano1ismKO) or by pharmacological inhibition with Ani9. In both Ano1ismKO MIALVs and Ani9-pretreated MIALVs, inhibition of BK channels increased contraction amplitude, increased peak AP and broadened the peak of the AP spike. In rat mesenteric lymphatic vessels, BK channel inhibition also abolished the characteristic post-spike notch, which was exaggerated with ANO1 inhibition, and significantly increased the peak potential and broadened the AP spike. We conclude that BK channels are present and functional on mouse and rat lymphatic muscle cells but are otherwise masked by the dominance of ANO1. KEY POINTS: Mouse and rat lymphatic muscle cells express functional BK channels. BK channels make little contribution to either rat or mouse lymphatic collecting vessel contractile function in basal conditions across a physiological pressure range. ANO1 limits the peak membrane potential achieved in the action potential and sets a plateau potential limiting the voltage-dependent activation of BK. BK channels are activated when ANO1 is absent or blocked and slightly impair contractile strength by reducing the peak membrane potential achieved in the action potential spike and accelerating the post-spike repolarization.


Asunto(s)
Potenciales de Acción , Anoctamina-1 , Canales de Potasio de Gran Conductancia Activados por el Calcio , Vasos Linfáticos , Animales , Anoctamina-1/metabolismo , Anoctamina-1/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Ratones , Ratas , Potenciales de Acción/fisiología , Masculino , Vasos Linfáticos/fisiología , Vasos Linfáticos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular/fisiología , Ratas Sprague-Dawley , Femenino , Miocitos del Músculo Liso/fisiología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos
2.
Cell Commun Signal ; 22(1): 243, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671495

RESUMEN

BACKGROUND: Coronary artery disease (CAD) is a leading cause of death in women. Epicardial adipose tissue (EAT) secretes cytokines to modulate coronary artery function, and the release of fatty acids from EAT serves as a readily available energy source for cardiomyocytes. However, despite having beneficial functions, excessive amounts of EAT can cause the secretion of proinflammatory molecules that increase the instability of atherosclerotic plaques and contribute to CAD progression. Although exercise mitigates CAD, the mechanisms by which exercise impacts EAT are unknown. The Yucatan pig is an excellent translational model for the effects of exercise on cardiac function. Therefore, we sought to determine if chronic aerobic exercise promotes an anti-inflammatory microenvironment in EAT from female Yucatan pigs. METHODS: Sexually mature, female Yucatan pigs (n = 7 total) were assigned to sedentary (Sed, n = 3) or exercise (Ex, n = 4) treatments, and coronary arteries were occluded (O) with an ameroid to mimic CAD or remained non-occluded (N). EAT was collected for bulk (n = 7 total) and single nucleus transcriptomic sequencing (n = 2 total, 1 per exercise treatment). RESULTS: Based on the bulk transcriptomic analysis, exercise upregulated S100 family, G-protein coupled receptor, and CREB signaling in neurons canonical pathways in EAT. The top networks in EAT affected by exercise as measured by bulk RNA sequencing were SRC kinase family, fibroblast growth factor receptor, Jak-Stat, and vascular endothelial growth factor. Single nucleus transcriptomic analysis revealed that exercise increased the interaction between immune, endothelial, and mesenchymal cells in the insulin-like growth factor pathway and between endothelial and other cell types in the platelet endothelial cell adhesion molecule 1 pathway. Sub-clustering revealed nine cell types in EAT, with fibroblast and macrophage populations predominant in O-Ex EAT and T cell populations predominant in N-Ex EAT. Unlike the findings for exercise alone as a treatment, there were not increased interactions between endothelial and mesenchymal cells in O-Ex EAT. Coronary artery occlusion impacted the most genes in T cells and endothelial cells. Genes related to fatty acid metabolism were the most highly upregulated in non-immune cells from O-Ex EAT. Sub-clustering of endothelial cells revealed that N-Ex EAT separated from other treatments. CONCLUSIONS: According to bulk transcriptomics, exercise upregulated pathways and networks related to growth factors and immune cell communication. Based on single nucleus transcriptomics, aerobic exercise increased cell-to-cell interaction amongst immune, mesenchymal, and endothelial cells in female EAT. Yet, exercise was minimally effective at reversing alterations in gene expression in endothelial and mesenchymal cells in EAT surrounding occluded arteries. These findings lay the foundation for future work focused on the impact of exercise on cell types in EAT.


Asunto(s)
Tejido Adiposo Epicárdico , Pericardio , Condicionamiento Físico Animal , Transcriptoma , Animales , Femenino , Inmunidad Adaptativa/genética , Núcleo Celular/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/genética , Tejido Adiposo Epicárdico/metabolismo , Inmunidad Innata , Pericardio/metabolismo , Porcinos , Transcriptoma/genética
3.
Nitric Oxide ; 148: 13-22, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642795

RESUMEN

Endothelial dysfunction, underlying the vascular complications of diabetes and other cardiovascular disorders, may result from uncoupling of endothelial nitric oxide synthase (eNOS) activity due to decreased levels of tetrahydrobiopterin (BH4), a critical co-factor for eNOS. Some clinical trials attempting to deliver exogenous BH4 as a potential therapeutic strategy in vascular disease states have failed due to oxidation of BH4 in the circulation. We sought to develop a means of protecting BH4 from oxidation while delivering it to dysfunctional endothelial cells. Polymeric and solid lipid nanoparticles (NPs) loaded with BH4 were delivered by injection or oral gavage, respectively, to streptozotocin-induced diabetic rats. BH4 was measured in coronary endothelial cells and endothelium-dependent vascular reactivity was assessed in vascular rings. Lymphatic uptake of orally delivered lipid NPs was verified by sampling mesenteric lymph. BH4-loaded polymeric NPs maintained nitric oxide production by cultured endothelial cells under conditions of oxidative stress. BH4-loaded NPs, delivered via injection or ingestion, increased coronary endothelial BH4 concentration and improved endothelium-dependent vasorelaxation in diabetic rats. Pharmacodynamics assessment indicated peak concentration of solid lipid NPs in the systemic bloodstream 6 hours after ingestion, with disappearance noted by 48 hours. These studies support the feasibility of utilizing NPs to deliver BH4 to dysfunctional endothelial cells to increase nitric oxide bioavailability. BH4-loaded NPs could provide an innovative tool to restore redox balance in blood vessels and modulate eNOS-mediated vascular function to reverse or retard vascular disease in diabetes.


Asunto(s)
Biopterinas , Diabetes Mellitus Experimental , Endotelio Vascular , Nanopartículas , Animales , Biopterinas/análogos & derivados , Biopterinas/farmacología , Biopterinas/administración & dosificación , Biopterinas/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Nanopartículas/química , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Ratas , Ratas Sprague-Dawley , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 324(5): H637-H653, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36867445

RESUMEN

We previously reported that exercise training drives enhanced agonist-stimulated hydrogen peroxide (H2O2) levels and restores endothelium-dependent dilation via an increased reliance on H2O2 in arterioles isolated from ischemic porcine hearts. In this study, we tested the hypothesis that exercise training would correct impaired H2O2-mediated dilation in coronary arterioles isolated from ischemic myocardium through increases in protein kinase G (PKG) and protein kinase A (PKA) activation and subsequent colocalization with sarcolemmal K+ channels. Female adult Yucatan miniature swine were surgically instrumented with an ameroid constrictor around the proximal left circumflex coronary artery, gradually inducing a collateral-dependent vascular bed. Arterioles (∼125 µm) supplied by the left anterior descending artery served as nonoccluded control vessels. Pigs were separated into exercise (treadmill; 5 days/wk for 14 wk) and sedentary groups. Collateral-dependent arterioles isolated from sedentary pigs were significantly less sensitive to H2O2-induced dilation compared with nonoccluded arterioles, whereas exercise training reversed the impaired sensitivity. Large conductance calcium-activated potassium (BKCa) channels and 4AP-sensitive voltage-gated (Kv) channels contributed significantly to dilation in nonoccluded and collateral-dependent arterioles of exercise-trained but not sedentary pigs. Exercise training significantly increased H2O2-stimulated colocalization of BKCa channels and PKA, but not PKG, in smooth muscle cells of collateral-dependent arterioles compared with other treatment groups. Taken together, our studies suggest that with exercise training, nonoccluded and collateral-dependent coronary arterioles better use H2O2 as a vasodilator through increased coupling with BKCa and 4AP-sensitive Kv channels; changes that are mediated in part by enhanced colocalization of PKA with BKCa channels.NEW & NOTEWORTHY The current study reveals that coronary arterioles distal to stenosis display attenuated dilation responses to H2O2 that are restored with endurance exercise training. Enhanced H2O2 dilation after exercise is dependent on Kv and BKCa channels and at least in part on in colocalization of BKCa channel and PKA and independent of PKA dimerization. These findings expand our earlier studies which demonstrated that exercise training drives beneficial adaptive responses of reactive oxygen species in the microvasculature of the ischemic heart.


Asunto(s)
Peróxido de Hidrógeno , Vasodilatación , Porcinos , Femenino , Animales , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Arteriolas/metabolismo , Porcinos Enanos/metabolismo , Vasodilatadores/farmacología , Vasos Coronarios/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 324(1): H155-H171, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459446

RESUMEN

On the one hand, lymphatic dysfunction induces interstitial edema and inflammation. On the other hand, the formation of edema and inflammation induce lymphatic dysfunction. However, informed by the earlier reports of undetected apoptosis of irradiated lymphatic endothelial cells (LECs) in vivo, lymphatic vessels are commonly considered inconsequential to ionizing radiation (IR)-induced inflammatory injury to normal tissues. Primarily because of the lack of understanding of the acute effects of IR exposure on lymphatic function, acute edema and inflammation, common sequelae of IR exposure, have been ascribed solely to blood vessel damage. Therefore, in the present study, the lymphatic acute responses to IR exposure were quantified to evaluate the hypothesis that IR exposure impairs lymphatic pumping. Rat mesenteric lymphatic vessels were irradiated in vivo or in vitro, and changes in pumping were quantified in isolated vessels in vitro. Compared with sham-treated vessels, pumping was lowered in lymphatic vessels irradiated in vivo but increased in vessels irradiated in vitro. Furthermore, unlike in blood vessels, the acute effects of IR exposure in lymphatic vessels were not mediated by nitric oxide-dependent pathways in either in vivo or in vitro irradiated vessels. After cyclooxygenase blockade, pumping was partially restored in lymphatic vessels irradiated in vitro but not in vessels irradiated in vivo. Taken together, these findings demonstrated that lymphatic vessels are radiosensitive and LEC apoptosis alone may not account for all the effects of IR exposure on the lymphatic system.NEW & NOTEWORTHY Earlier studies leading to the common belief that lymphatic vessels are radioresistant either did not characterize lymphatic pumping, deemed necessary for the resolution of edema and inflammation, or did it in vivo. By characterizing pumping in vitro, the present study, for the first time, demonstrated that lymphatic pumping was impaired in vessels irradiated in vivo and enhanced in vessels irradiated in vitro. Furthermore, the pathways implicated in ionizing radiation-induced blood vessel damage did not mediate lymphatic responses.


Asunto(s)
Células Endoteliales , Vasos Linfáticos , Ratas , Animales , Células Endoteliales/metabolismo , Vasos Linfáticos/metabolismo , Inflamación/metabolismo , Radiación Ionizante , Edema/metabolismo
6.
Microvasc Res ; 150: 104590, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37481160

RESUMEN

Exercise training is an effective, nonpharmacologic therapy and preventative measure for ischemic heart disease. While recent studies have examined reactive oxygen species (ROS) as mediators of exercise training-enhanced coronary blood flow, specific oxidants and their sources have yet to be fully elucidated. We investigated the hypothesis that NADPH oxidase (NOX)-derived superoxide anion would contribute to vasodilation effects in the coronary microcirculation of swine and that these effects would be impaired by chronic ischemia and rescued with exercise training. Adult Yucatan miniature swine were instrumented with an ameroid occluder around the proximal left circumflex coronary artery, resulting in a collateral-dependent myocardial region. Eight weeks post-operatively, swine were randomly assigned to either a sedentary or exercise training (treadmill run; 5 days/week for 14 weeks) protocol. Coronary arterioles were isolated from nonoccluded and collateral-dependent myocardial regions and pressure myography was performed. Exercise training resulted in enhanced endothelium-dependent dilation after occlusion. Scavenging of superoxide via the superoxide dismutase (SOD)-mimetic, tempol, attenuated dilation in both nonoccluded and collateral-dependent arterioles of exercise-trained, but not sedentary swine. NOX1/4 inhibition with GKT136901 attenuated dilation after exercise training but only in collateral-dependent arterioles. High performance liquid chromatography revealed that neither ischemia nor exercise training significantly altered basal or bradykinin-stimulated superoxide levels. Furthermore, superoxide production was not attributable to NOX isoforms nor mitochondria. Immunoblot analyses revealed significantly decreased NOX2 protein after exercise with no differences in NOX1, NOX4, p22phox, SOD proteins. Taken together, these data provide evidence that superoxide and NOX4 independently contribute to enhanced endothelium-dependent dilation following exercise training.


Asunto(s)
Isquemia Miocárdica , Superóxidos , Porcinos , Animales , Superóxidos/metabolismo , Arteriolas , Dilatación , Porcinos Enanos , Isquemia Miocárdica/metabolismo , Vasos Coronarios/metabolismo , Vasodilatación , Superóxido Dismutasa/metabolismo , Endotelio Vascular
7.
Curr Top Membr ; 90: 141-166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36368873

RESUMEN

Ischemic heart disease is the leading cause of death and a major public health and economic burden worldwide with expectations of predicted growth in the foreseeable future. It is now recognized clinically that flow-limiting stenosis of the large coronary conduit arteries as well as microvascular dysfunction in the absence of severe stenosis can each contribute to the etiology of ischemic heart disease. The primary site of coronary vascular resistance, and control of subsequent coronary blood flow, is found in the coronary microvasculature, where small changes in radius can have profound impacts on myocardial perfusion. Basal active tone and responses to vasodilators and vasoconstrictors are paramount in the regulation of coronary blood flow and adaptations in signaling associated with ion channels are a major factor in determining alterations in vascular resistance and thereby myocardial blood flow. K+ channels are of particular importance as contributors to all aspects of the regulation of arteriole resistance and control of perfusion into the myocardium because these channels dictate membrane potential, the resultant activity of voltage-gated calcium channels, and thereby, the contractile state of smooth muscle. Evidence also suggests that K+ channels play a significant role in adaptations with cardiovascular disease states. In this review, we highlight our research examining the role of K+ channels in ischemic heart disease and adaptations with exercise training as treatment, as well as how our findings have contributed to this area of study.


Asunto(s)
Hemodinámica , Isquemia Miocárdica , Humanos , Constricción Patológica , Arteriolas/fisiología , Resistencia Vascular
8.
Am J Physiol Heart Circ Physiol ; 320(6): H2351-H2370, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33961506

RESUMEN

Until recently, epicardial coronary stenosis has been considered the primary outcome of coronary heart disease, and clinical interventions have been dedicated primarily to the identification and removal of flow-limiting stenoses. However, a growing body of literature indicates that both epicardial stenosis and microvascular dysfunction contribute to damaging myocardial ischemia. In this review, we discuss the coexistence of macro- and microvascular disease, and how the structure and function of the distal microcirculation is impacted by the hemodynamic consequences of an epicardial, flow-limiting stenosis. Mechanisms of endothelial dysfunction as well as alterations of smooth muscle function in the coronary microcirculation distal to stenosis are discussed. Risk factors including diabetes, metabolic syndrome, and aging exacerbate microvascular dysfunction in the myocardium distal to a stenosis, and our current understanding of the role of these factors in limiting collateralization and angiogenesis of the ischemic myocardium is presented. Importantly, exercise training has been shown to promote collateral growth and improve microvascular function distal to stenosis; thus, the current literature reporting the mechanisms that underlie the beneficial effects of exercise training in the microcirculation distal to epicardial stenosis is reviewed. We also discuss recent studies of therapeutic interventions designed to improve microvascular function and stimulate angiogenesis in clinically relevant animal models of epicardial stenosis and microvascular disease. Finally, microvascular adaptation to removal of epicardial stenosis is considered.


Asunto(s)
Circulación Coronaria/fisiología , Estenosis Coronaria/fisiopatología , Endotelio/fisiopatología , Microcirculación/fisiología , Microvasos/fisiopatología , Músculo Liso Vascular/fisiopatología , Isquemia Miocárdica/fisiopatología , Adaptación Fisiológica , Envejecimiento/fisiología , Animales , Circulación Colateral , Diabetes Mellitus , Angiopatías Diabéticas/fisiopatología , Hemodinámica , Humanos , Síndrome Metabólico/fisiopatología , Pericardio
9.
Am J Physiol Heart Circ Physiol ; 319(4): H915-H926, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32857599

RESUMEN

We have previously reported enhanced Ca2+ sensitivity of coronary arteries that is dependent upon collateral circulation for their blood supply. For the current study, we hypothesized that small collateral-dependent arteries would exhibit an enhanced KCl-mediated contractile response attributable to Ca2+ sensitization and increased Ca2+ channel current. Ameroid constrictors were surgically placed around the left circumflex (LCX) artery of female Yucatan miniature swine. Eight weeks postoperatively, pigs were randomized into sedentary or exercise-trained (treadmill run; 5 days/wk; 14 wk) groups. Small coronary arteries (150-300 µm luminal diameter) were isolated from myocardial regions distal to the collateral-dependent LCX and the nonoccluded left anterior descending arteries. Contractile tension and simultaneous measures of both tension and intracellular free Ca2+ levels (fura-2) were measured in response to increasing concentrations of KCl. In addition, whole cell Ca2+ currents were also obtained. Chronic occlusion enhanced contractile responses to KCl and increased Ca2+ sensitization in collateral-dependent compared with nonoccluded arteries of both sedentary and exercise-trained pigs. In contrast, smooth muscle cell Ca2+ channel current was not altered by occlusion or exercise training. Ca2+/calmodulin-dependent protein kinase II (CaMKII; inhibited by KN-93, 0.3-1 µM) contributed to the enhanced contractile response in collateral-dependent arteries of sedentary pigs, whereas both CaMKII and Rho-kinase (inhibited by hydroxyfasudil, 30 µM or Y27632, 10 µM) contributed to increased contraction in exercise-trained animals. Taken together, these data suggest that chronic occlusion leads to enhanced contractile responses to KCl in collateral-dependent coronary arteries via increased Ca2+ sensitization, a response that is further augmented with exercise training.NEW & NOTEWORTHY Small coronary arteries distal to chronic occlusion displayed enhanced contractile responses, which were further augmented after exercise training and attributable to enhanced calcium sensitization without alterations in calcium channel current. The calcium sensitization mediators Rho-kinase and CaMKII significantly contributed to enhanced contraction in collateral-dependent arteries of exercise-trained, but not sedentary, pigs. Exercise-enhanced contractile responses may increase resting arterial tone, creating an enhanced coronary flow reserve that is accessible during periods of increased metabolic demand.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Circulación Colateral/efectos de los fármacos , Circulación Coronaria/efectos de los fármacos , Oclusión Coronaria/fisiopatología , Vasos Coronarios/efectos de los fármacos , Esfuerzo Físico , Cloruro de Potasio/farmacología , Vasoconstricción/efectos de los fármacos , Adaptación Fisiológica , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Oclusión Coronaria/metabolismo , Vasos Coronarios/metabolismo , Vasos Coronarios/fisiopatología , Modelos Animales de Enfermedad , Femenino , Porcinos , Porcinos Enanos , Quinasas Asociadas a rho/metabolismo
10.
Microvasc Res ; 122: 34-40, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30439484

RESUMEN

OBJECTIVE: Freshly isolated endothelial cells from both conduit arteries and microvasculature were used to test the hypothesis that eNOS protein content and nitric oxide production in coronary endothelial cells increases with vessel radius. METHODS: Porcine hearts were obtained from a local abattoir. Large and small arteries as well as arterioles were dissected free of myocardium and homogenized as whole vessels. Additionally, endothelial cells were isolated from both conduit arteries and left ventricular myocardium by tissue digestion with collagenase, followed by endothelial cell isolation using biotinylated-anti-CD31 and streptavidin-coated paramagnetic beads. Purity of isolated endothelial cells was confirmed by immunofluorescence and immunoblot. RESULTS: In whole vessel lysate, immunoblot analysis revealed that protein content for eNOS was greater in arterioles compared to small and large arteries. Nitric oxide metabolites (nitrite plus nitrate; NOx) levels measured from whole vessel lysate decreased as vessel size increased, with both arterioles and small arteries displaying significantly greater NOx content than conduit. Consistent with our hypothesis, both eNOS protein level and NOx were significantly greater in endothelial cells isolated from conduit arteries compared with those from coronary microvasculature. Furthermore, confocal microscopy revealed that eNOS protein was present in all conduit and microvascular endothelial cells, although eNOS staining was less intense in microvascular cells than those of conduit artery. CONCLUSIONS: These findings demonstrate increased eNOS protein and NOx content in endothelial cells of conduit arteries compared with the microcirculation and underscore the importance of comparing endothelial-specific molecules in freshly isolated endothelial cells, rather than whole lysate of different sized vessels.


Asunto(s)
Arteriolas/enzimología , Vasos Coronarios/enzimología , Células Endoteliales/enzimología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Animales , Arteriolas/citología , Vasos Coronarios/citología , Nitratos/metabolismo , Nitritos/metabolismo , Sus scrofa
11.
Microcirculation ; 22(1): 68-78, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25220869

RESUMEN

OBJECTIVE: To the test the hypothesis that exercise training would increase endothelin-mediated vasoconstriction in collateral-dependent arteries via enhanced contribution of ET(A). METHODS: An ameroid constrictor was surgically placed around the proximal LCX artery to induce gradual occlusion in Yucatan miniature swine. Eight weeks postoperatively, pigs were randomized into sedentary or exercise-training (treadmill; 5 days/week; 14 weeks) groups. Subsequently, arteries (~150 µm diameter) were isolated from collateral-dependent and nonoccluded myocardial regions and studied. RESULTS: Following exercise training, ET-1-mediated contraction was significantly enhanced in collateral-dependent arteries. Exercise training induced a disproportionate increase in the ET(A) contribution to the ET-1 contractile response in collateral-dependent arteries, with negligible contributions by ET(B). In collateral-dependent arteries of sedentary pigs, inhibition of ET(A) or ET(B) did not significantly alter ET-1 contractile responses in collateral-dependent arteries, suggesting compensation by the functionally active receptor. These adaptations occurred without significant changes in ET(A), ET(B), or ECE mRNA levels but with significant exercise-training-induced elevations in endothelin levels in both nonoccluded and collateral-dependent myocardial regions. CONCLUSIONS: Taken together, these data reveal differential adaptive responses in collateral-dependent arteries based upon physical activity level. ET(A) and ET(B) appear to compensate for one another to maintain contraction in sedentary pigs, whereas exercise-training favors enhanced contribution of ET(A).


Asunto(s)
Vasos Coronarios , Endotelinas/metabolismo , Isquemia Miocárdica , Condicionamiento Físico Animal , Vasoconstricción , Animales , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Vasos Coronarios/fisiopatología , Modelos Animales de Enfermedad , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Isquemia Miocárdica/fisiopatología , Porcinos , Porcinos Enanos
12.
Microvasc Res ; 98: 166-71, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24534069

RESUMEN

Myosin phosphatase (MP) is a key target of signaling pathways that regulate smooth muscle tone and blood flow. Alternative splicing of MP targeting subunit (MYPT1) exon 24 (E24) generates isoforms with variable presence of a C-terminal leucine zipper (LZ) required for activation of MP by NO/cGMP. Here we examined the expression of MP and associated genes in a disease model in the coronary circulation. Female Yucatan miniature swine remained sedentary or were exercise-trained beginning eight weeks after placement of an ameroid constrictor around the left circumflex (LCX) artery. Fourteen weeks later epicardial arteries (~1mm) and resistance arterioles (~125 µm) were harvested and assayed for gene expression. MYPT1 isoforms were distinct in the epicardial arteries (E24-/LZ+) and resistance arterioles (E24+/LZ-) and unchanged by exercise training or coronary occlusion. MYPT1, CPI-17 and PDE5 mRNA levels were not different between arteries and arterioles while Kir2.1 and eNOS were 6.6-fold and 3.9-fold higher in the arterioles. There were no significant changes in transcript abundance in epicardial arteries of the collateralized (LCX) vs. non-occluded left anterior descending (LAD) territories, or in exercise-trained vs. sedentary pigs. There was a significant 1.2 fold increase in CPI-17 in collateral-dependent arterioles, independent of exercise, and a significant 1.7 fold increase in PDE5 in arterioles from exercise-trained pigs, independent of occlusion. We conclude that differences in MYPT1 E24 (LZ) isoforms, eNOS, and Kir2.1 distinguish epicardial arteries and resistance coronary arterioles. Up-regulation of coronary arteriolar PDE5 by exercise and CPI-17 by chronic occlusion could contribute to altered vasomotor responses and requires further study.


Asunto(s)
Oclusión Coronaria/enzimología , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Condicionamiento Físico Animal , Empalme Alternativo , Animales , Arteriolas/metabolismo , Secuencia de Bases , Circulación Coronaria , Modelos Animales de Enfermedad , Femenino , Humanos , Isoenzimas/metabolismo , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Porcinos , Porcinos Enanos
13.
Microcirculation ; 21(5): 388-400, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24447072

RESUMEN

OBJECTIVE: The aim of this study was to test the hypothesis that exercise training enhances sustained relaxation to persistent endothelium-dependent vasodilator exposure via increased nitric oxide contribution in small coronary arteries of control and ischemic hearts. METHODS: Yucatan swine were designated to a control group or a group in which an ameroid constrictor was placed around the proximal LCX. Subsequently, pigs from both groups were assigned to exercise (five days/week; 16 weeks) or SED regimens. Coronary arteries (~100-350 µm) were isolated from control pigs and from both nonoccluded and collateral-dependent regions of chronically-occluded hearts. RESULTS: In arteries from control pigs, training significantly enhanced relaxation responses to increasing concentrations of bradykinin (10(-10) -10(-7) M) and sustained relaxation to a single bradykinin concentration (30 nM), which were abolished by NOS inhibition. Training also significantly prolonged bradykinin-mediated relaxation in collateral-dependent arteries of occluded pigs, which was associated with more persistent increases in endothelial cellular Ca(2+) levels, and reversed with NOS inhibition. Protein levels for eNOS and p-eNOS-(Ser1179), but not caveolin-1, Hsp90, or Akt, were significantly increased with occlusion, independent of training state. CONCLUSIONS: Exercise training enhances sustained relaxation to endothelium-dependent agonist stimulation in small arteries of control and ischemic hearts by enhanced nitric oxide contribution and endothelial Ca(2+) responses.


Asunto(s)
Vasos Coronarios/fisiopatología , Endotelio Vascular/fisiopatología , Isquemia Miocárdica/fisiopatología , Condicionamiento Físico Animal , Vasodilatación , Adaptación Fisiológica , Animales , Bradiquinina/metabolismo , Caveolina 1/metabolismo , Vasos Coronarios/metabolismo , Endotelio Vascular/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Isquemia Miocárdica/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Porcinos , Porcinos Enanos
14.
Am J Physiol Heart Circ Physiol ; 305(9): H1321-31, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23997097

RESUMEN

Exercise training of coronary artery disease patients is of considerable interest, since it has been shown to improve vascular function and, thereby, enhance blood flow into compromised myocardial regions. However, the mechanisms underlying exercise-induced improvements in vascular function have not been fully elucidated. We tested the hypothesis that exercise training increases the contribution of multiple mediators to endothelium-dependent relaxation of coronary arteries in the underlying setting of chronic coronary artery occlusion. To induce gradual occlusion, an ameroid constrictor was placed around the proximal left circumflex coronary artery in Yucatan miniature swine. At 8 wk postoperatively, pigs were randomly assigned to sedentary or exercise (treadmill, 5 days/wk) regimens for 14 wk. Exercise training significantly enhanced the contribution of nitric oxide, prostanoids, and large-conductance Ca(2+)-dependent K(+) (BKCa) channels to endothelium-dependent, bradykinin-mediated relaxation in nonoccluded and collateral-dependent arteries. Combined nitric oxide synthase, prostanoid, and BKCa channel inhibition ablated the enhanced relaxation associated with exercise training. Exercise training significantly increased nitric oxide levels in response to bradykinin in endothelial cells isolated from nonoccluded and collateral-dependent arteries. Bradykinin treatment significantly increased PGI2 levels in all artery treatment groups and tended to be further enhanced after nitric oxide synthase inhibition in exercise-trained pigs. No differences were found in whole cell BKCa channel currents, BKCa channel protein levels, or arterial cyclic nucleotide levels. Although redundant, upregulation of parallel vasodilator pathways appears to contribute to enhanced endothelium-dependent relaxation, potentially providing a more refined control of blood flow after exercise training.


Asunto(s)
Vasos Coronarios/fisiopatología , Endotelio Vascular/fisiopatología , Terapia por Ejercicio , Isquemia Miocárdica/terapia , Vasodilatación , Animales , Bradiquinina/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Vasos Coronarios/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Endotelio Vascular/metabolismo , Epoprostenol/metabolismo , Femenino , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Conducta Sedentaria , Porcinos , Porcinos Enanos , Factores de Tiempo
15.
Microcirculation ; 20(2): 170-82, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23002811

RESUMEN

OBJECTIVE: Test the hypothesis that exercise training increases the contribution of BK(Ca) channels to endothelium-mediated dilation in coronary arterioles from collateral-dependent myocardial regions of chronically occluded pig hearts and may function downstream of H2O2. METHODS: An ameroid constrictor was placed around the proximal left circumflex coronary artery to induce gradual occlusion in Yucatan miniature swine. Eight weeks postoperatively, pigs were randomly assigned to sedentary or exercise training (treadmill; 14 week) regimens. RESULTS: Exercise training significantly enhanced bradykinin-mediated dilation in collateral-dependent arterioles (~125 µm diameter) compared with sedentary pigs. The BK(Ca) -channel blocker, iberiotoxin alone or in combination with the H2O2 scavenger, polyethylene glycol catalase, reversed exercise training-enhanced dilation in collateral-dependent arterioles. Iberiotoxin-sensitive whole-cell K+ currents (i.e., BK(Ca)-channel currents) were not different between smooth muscle cells of nonoccluded and collateral-dependent arterioles of sedentary and exercise trained groups. CONCLUSIONS: These data provide evidence that BK(Ca)-channel activity contributes to exercise training-enhanced endothelium-dependent dilation in collateral-dependent coronary arterioles despite no change in smooth muscle BK(Ca)-channel current. Taken together, our findings suggest that a component of the bradykinin signaling pathway, which stimulates BK(Ca) channels, is enhanced by exercise training in collateral-dependent arterioles and suggest a potential role for H2O2 as the mediator.


Asunto(s)
Arteriolas/fisiología , Circulación Coronaria/fisiología , Endotelio Vascular/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Condicionamiento Físico Animal/fisiología , Vasodilatación/fisiología , Animales , Bradiquinina/farmacología , Bradiquinina/fisiología , Catalasa/metabolismo , Catalasa/farmacología , Circulación Colateral/fisiología , Femenino , Peróxido de Hidrógeno/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/agonistas , Canales de Potasio de Gran Conductancia Activados por el Calcio/antagonistas & inhibidores , Músculo Liso Vascular/fisiología , Técnicas de Placa-Clamp , Péptidos/farmacología , Polietilenglicoles/farmacología , Potasio/metabolismo , Distribución Aleatoria , Superóxido Dismutasa/metabolismo , Porcinos , Porcinos Enanos
16.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961306

RESUMEN

Coronary artery disease (CAD) is a leading cause of death in women. Although exercise mitigates CAD, the mechanisms by which exercise impacts epicardial adipose tissue (EAT) are unknown. We hypothesized that exercise promotes an anti-inflammatory microenvironment in EAT from female pigs. Yucatan pigs (n=7) were assigned to sedentary (Sed) or exercise (Ex) treatments and coronary arteries were occluded (O) with an ameroid to mimic CAD or remained non-occluded (N). EAT was collected for bulk and single nucleus transcriptomic sequencing (snRNA-seq). Exercise upregulated G-protein coupled receptor, S100 family, and FAK pathways and downregulated the coagulation pathway. Exercise increased the interaction between immune, endothelial, and mesenchymal cells in the insulin-like growth factor pathway and between endothelial and other cell types in the platelet endothelial cell adhesion molecule 1 pathway. Sub-clustering revealed nine cell types in EAT with fibroblast and macrophage populations predominant in O-Ex EAT and T cell population predominant in N-Ex EAT. Coronary occlusion impacted the largest number of genes in T and endothelial cells. Genes related to fatty acid metabolism were the most highly upregulated in non-immune cells from O-Ex EAT. Sub-clustering of endothelial cells revealed that N-Ex EAT separated from other treatments. In conclusion, aerobic exercise increased interaction amongst immune and mesenchymal and endothelial cells in female EAT. Exercise was minimally effective at reversing alterations in gene expression in endothelial and mesenchymal cells in EAT surrounding occluded arteries. These findings lay the foundation for future work focused on the impact of exercise on cell types in EAT.

17.
Cardiovasc Pathol ; 60: 107428, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35430379

RESUMEN

In this report, we showcase diffusible iodine-based contrast-enhanced computed tomography (DICE-CT) as a method for improving soft tissue visualization and reducing beam hardening artifact within a stented vessel. This technique is commonly used in our pathology lab to image soft tissue specimens with dense metal implants and to ensure reliable morphological analysis through clear delineation of tissue structures. For this report, a porcine right coronary artery with an implanted metal stent was scanned using both conventional and DICE-CT methods. Upon reconstruction, DICE-CT produced less beam hardening artifact in comparison to traditional micro-CT; furthermore, DICE-CT produced results with morphometric similarity to histology. Accordingly, these differences illustrated the clear advantage of using DICE-CT over conventional micro-CT when imaging soft tissue specimens with dense metal implants.


Asunto(s)
Yodo , Stents , Animales , Vasos Coronarios/diagnóstico por imagen , Metales , Porcinos , Microtomografía por Rayos X
18.
Steroids ; 183: 108997, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35314416

RESUMEN

BACKGROUND: Hormone replacement therapy was found to be effective in cardiovascular protection only in younger women, not in older women. In this study, we tested whether G protein-coupled estrogen receptor 1 (GPER) activation improves vascular activities in response to ET-1 and ACh in aging rats. METHODS: Isometric tension study was applied on aortic rings isolated from young adult (5-7 months) and reproductive senescent middle-aged (10-12 months) female Sprague Dawley rats and age matched males. RESULTS: The aortic contractile response to ET-1 and the relaxation response to ACh were reduced in the female middle-aged rats compared to the female young adult rats. The presence of G-1, the GPER agonist, normalized the reduced vascular activities. Cyclooxygenase inhibitor, meclofenamate, blocked the increased constriction effect of G-1, but further enhanced relaxation effect of G-1. There was no significant difference in aortic reactivity to either ET-1 or ACh between the male middle-aged and young adult rats. The contractile response to ET-1 was not different within the same age of the two sex groups, but there was a remarkable difference in relaxation response to ACh between young adult females and males with better response in females. GPER activation greatly improved the aortic relaxation of both young adult and middle-aged females, but not the males. CONCLUSIONS: Endothelial dysfunction occurs earlier in males, but in females, dysfunction delays until middle age. GPER activation improves the vascular activities in females, but not males. It is promising to employ GPER as a potential drug target in cardiovascular disease in women.


Asunto(s)
Receptores de Estrógenos , Receptores Acoplados a Proteínas G , Anciano , Animales , Endotelio Vascular , Estrógenos/farmacología , Femenino , Proteínas de Unión al GTP/farmacología , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
19.
J Mol Cell Cardiol ; 50(1): 203-13, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20937283

RESUMEN

The extracellular matrix (ECM) protein-integrin-cytoskeleton axis plays a central role as a mechanotransducing protein assemblage in many cell types. However, how the process of mechanotransduction and the mechanically generated signals arising from this axis affect myofilament function in cardiac muscle are not completely understood. We hypothesize that ECM proteins can regulate cardiac function through integrin binding, and thereby alter the intracellular calcium concentration ([Ca(2+)](i)) and/or modulate myofilament activation processes. Force measurements made in mouse papillary muscle demonstrated that in the presence of the soluble form of the ECM protein, fibronectin (FN), active force was increased significantly by 40% at 1 Hz, 54% at 2 Hz, 35% at 5 Hz and 16% at 9 Hz stimulation frequencies. Furthermore, increased active force in the presence of FN was associated with 12-33% increase in [Ca(2+)](i) and 20-50% increase in active force per unit Ca(2+). A function blocking antibody for α5 integrin prevented the effects of the FN on the changes in force and [Ca(2+)](i), whereas a function blocking α3 integrin antibody did not reverse the effects of FN. The effects of FN were reversed by an L-type Ca(2+) channel blocker, verapamil or PKA inhibitor. Freshly isolated cardiomyocytes exhibited a 39% increase in contraction force and a 36% increase in L-type Ca(2+) current in the presence of FN. Fibers treated with FN showed a significant increase in the phosphorylation of phospholamban; however, the phosphorylation of troponin I was unchanged. These results demonstrate that FN acts via α5ß1 integrin to increase force production in myocardium and that this effect is partly mediated by increases in [Ca(2+)](i) and Ca(2+) sensitivity, PKA activation and phosphorylation of phospholamban.


Asunto(s)
Calcio/metabolismo , Fibronectinas/farmacología , Integrina alfa5beta1/metabolismo , Músculos Papilares/efectos de los fármacos , Músculos Papilares/metabolismo , Animales , Western Blotting , Células Cultivadas , Electrofisiología , Masculino , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo
20.
Am J Physiol Heart Circ Physiol ; 301(4): H1579-87, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21856915

RESUMEN

Exercise training has been shown to improve cardiac dysfunction in both patients and animal models of coronary artery disease; however, the underlying cellular and molecular mechanisms have not been completely understood. We hypothesized that exercise training would improve force generation in the myocardium distal to chronic coronary artery occlusion via altered intracellular Ca(2+) concentration ([Ca(2+)](i)) cycling and/or Ca(2+) sensitization of myofilaments. Ameroid occluders were surgically placed around the proximal left circumflex coronary artery of adult female Yucatan pigs. Twenty-two weeks postoperatively, the myocardium was isolated from nonoccluded (left anterior descending artery dependent) and collateral-dependent (formerly left circumflex coronary artery dependent) regions of sedentary (pen confined) and exercise-trained (treadmill run, 5 days/wk for 14 wk) pigs. Force measurements in myocardial strips showed that the percent change in force at stimulation frequencies of 3 and 4 Hz relative to 1 Hz was significantly higher in exercise-trained pigs compared with sedentary pigs. ß-Adrenergic stimulation with dobutamine significantly improved force kinetics in myocardial strips of sedentary but not exercise-trained pigs at 1 Hz. Additionally, time to peak and half-decay of intracellular Ca(2+) (340-to-380-nm fluoresence ratio) responses at 1 Hz were significantly decreased in the collateral-dependent region of exercise-trained pigs with no difference in peak [Ca(2+)](i) between groups. Furthermore, the skinned myocardium from exercise-trained pigs showed an increase in Ca(2+) sensitivity compared with sedentary pigs. Immunoblot analysis revealed that the relative levels of cardiac troponin T and ß(1)-adrenergic receptors were decreased in hearts from exercise-trained pigs independent of occlusion. Also, the ratio of phosphorylated to total myosin light chain-2, basal phosphorylation levels of cardiac troponin I (Ser(23) and Ser(24)), and cardiac myosin binding protein-C (Ser(282)) were unaltered by occlusion or exercise training. Thus, our data demonstrate that exercise training-enhanced force generation in the nonoccluded and collateral-dependent myocardium was associated with improved Ca(2+) transients, increased Ca(2+) sensitization of myofilament proteins, and decreased expression levels of ß(1)-adrenergic receptors and cardiac troponin T.


Asunto(s)
Calcio/fisiología , Oclusión Coronaria/fisiopatología , Miocardio/metabolismo , Miofibrillas/fisiología , Condicionamiento Físico Animal/fisiología , Agonistas Adrenérgicos beta/farmacología , Animales , Western Blotting , Calcio/metabolismo , Circulación Colateral/fisiología , Dobutamina/farmacología , Estimulación Eléctrica , Femenino , Pruebas de Función Cardíaca , Técnicas In Vitro , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Miofibrillas/metabolismo , Fosfoproteínas/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA