Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Alzheimers Dement ; 20(5): 3290-3304, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38511601

RESUMEN

INTRODUCTION: Genome-wide association studies (GWAS) have identified loci associated with Alzheimer's disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS: We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases = 2184, N controls = 2383) and targeted analyses in subpopulations using WGS data from the Alzheimer's Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS: Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION: This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS.


Asunto(s)
Enfermedad de Alzheimer , Estudio de Asociación del Genoma Completo , Secuenciación Completa del Genoma , Humanos , Enfermedad de Alzheimer/genética , Femenino , Masculino , Predisposición Genética a la Enfermedad/genética , Anciano , Polimorfismo de Nucleótido Simple/genética , Variación Genética/genética
2.
J Am Heart Assoc ; 13(11): e032743, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38808571

RESUMEN

BACKGROUND: Life's Essential 8 (LE8) is an enhanced metric for cardiovascular health. The interrelations among LE8, biomarkers of aging, and disease risks are unclear. METHODS AND RESULTS: LE8 score was calculated for 5682 Framingham Heart Study participants. We implemented 4 DNA methylation-based epigenetic age biomarkers, with older epigenetic age hypothesized to represent faster biological aging, and examined whether these biomarkers mediated the associations between the LE8 score and cardiovascular disease (CVD), CVD-specific mortality, and all-cause mortality. We found that a 1 SD increase in the LE8 score was associated with a 35% (95% CI, 27-41; P=1.8E-15) lower risk of incident CVD, a 36% (95% CI, 24-47; P=7E-7) lower risk of CVD-specific mortality, and a 29% (95% CI, 22-35; P=7E-15) lower risk of all-cause mortality. These associations were partly mediated by epigenetic age biomarkers, particularly the GrimAge and the DunedinPACE scores. The potential mediation effects by epigenetic age biomarkers tended to be more profound in participants with higher genetic risk for older epigenetic age, compared with those with lower genetic risk. For example, in participants with higher GrimAge polygenic scores (greater than median), the mean proportion of mediation was 39%, 39%, and 78% for the association of the LE8 score with incident CVD, CVD-specific mortality, and all-cause mortality, respectively. No significant mediation was observed in participants with lower GrimAge polygenic score. CONCLUSIONS: DNA methylation-based epigenetic age scores mediate the associations between the LE8 score and incident CVD, CVD-specific mortality, and all-cause mortality, particularly in individuals with higher genetic predisposition for older epigenetic age.


Asunto(s)
Envejecimiento , Enfermedades Cardiovasculares , Metilación de ADN , Epigénesis Genética , Humanos , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/mortalidad , Femenino , Masculino , Persona de Mediana Edad , Anciano , Envejecimiento/genética , Factores de Edad , Medición de Riesgo , Factores de Riesgo , Causas de Muerte , Adulto , Biomarcadores/sangre
3.
JAMA Cardiol ; 9(3): 263-271, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38294787

RESUMEN

Importance: Familial hypercholesterolemia (FH) is a genetic disorder that often results in severely high low-density lipoprotein cholesterol (LDL-C) and high risk of premature coronary heart disease (CHD). However, the impact of FH variants on CHD risk among individuals with moderately elevated LDL-C is not well quantified. Objective: To assess CHD risk associated with FH variants among individuals with moderately (130-189 mg/dL) and severely (≥190 mg/dL) elevated LDL-C and to quantify excess CHD deaths attributable to FH variants in US adults. Design, Setting, and Participants: A total of 21 426 individuals without preexisting CHD from 6 US cohort studies (Atherosclerosis Risk in Communities study, Coronary Artery Risk Development in Young Adults study, Cardiovascular Health Study, Framingham Heart Study Offspring cohort, Jackson Heart Study, and Multi-Ethnic Study of Atherosclerosis) were included, 63 of whom had an FH variant. Data were collected from 1971 to 2018, and the median (IQR) follow-up was 18 (13-28) years. Data were analyzed from March to May 2023. Exposures: LDL-C, cumulative past LDL-C, FH variant status. Main Outcomes and Measures: Cox proportional hazards models estimated associations between FH variants and incident CHD. The Cardiovascular Disease Policy Model projected excess CHD deaths associated with FH variants in US adults. Results: Of the 21 426 individuals without preexisting CHD (mean [SD] age 52.1 [15.5] years; 12 041 [56.2%] female), an FH variant was found in 22 individuals with moderately elevated LDL-C (0.3%) and in 33 individuals with severely elevated LDL-C (2.5%). The adjusted hazard ratios for incident CHD comparing those with and without FH variants were 2.9 (95% CI, 1.4-6.0) and 2.6 (95% CI, 1.4-4.9) among individuals with moderately and severely elevated LDL-C, respectively. The association between FH variants and CHD was slightly attenuated when further adjusting for baseline LDL-C level, whereas the association was no longer statistically significant after adjusting for cumulative past LDL-C exposure. Among US adults 20 years and older with no history of CHD and LDL-C 130 mg/dL or higher, more than 417 000 carry an FH variant and were projected to experience more than 12 000 excess CHD deaths in those with moderately elevated LDL-C and 15 000 in those with severely elevated LDL-C compared with individuals without an FH variant. Conclusions and Relevance: In this pooled cohort study, the presence of FH variants was associated with a 2-fold higher CHD risk, even when LDL-C was only moderately elevated. The increased CHD risk appeared to be largely explained by the higher cumulative LDL-C exposure in individuals with an FH variant compared to those without. Further research is needed to assess the value of adding genetic testing to traditional phenotypic FH screening.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Adulto Joven , Humanos , Femenino , Persona de Mediana Edad , Masculino , Hipercolesterolemia/complicaciones , LDL-Colesterol/genética , Enfermedades Cardiovasculares/prevención & control , Estudios de Cohortes , Factores de Riesgo , Hiperlipoproteinemia Tipo II/diagnóstico , Enfermedad de la Arteria Coronaria/complicaciones , Aterosclerosis/complicaciones , Factores de Riesgo de Enfermedad Cardiaca
4.
medRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38903089

RESUMEN

Genome-wide association studies (GWAS) have identified numerous body mass index (BMI) loci. However, most underlying mechanisms from risk locus to BMI remain unknown. Leveraging omics data through integrative analyses could provide more comprehensive views of biological pathways on BMI. We analyzed genotype and blood gene expression data in up to 5,619 samples from the Framingham Heart Study (FHS). Using 3,992 single nucleotide polymorphisms (SNPs) at 97 BMI loci and 20,692 transcripts within 1 Mb, we performed separate association analyses of transcript with BMI and SNP with transcript (PBMI and PSNP, respectively) and then a correlated meta-analysis between the full summary data sets (PMETA). We identified transcripts that met Bonferroni-corrected significance for each omic, were more significant in the correlated meta-analysis than each omic, and were at least nominally associated with BMI in FHS data. Among 308 significant SNP-transcript-BMI associations, we identified seven genes (NT5C2, GSTM3, SNAPC3, SPNS1, TMEM245, YPEL3, and ZNF646) in five association regions. Using an independent sample of blood gene expression data, we validated results for SNAPC3 and YPEL3. We tested for generalization of these associations in hypothalamus, nucleus accumbens, and liver and observed significant (PMETA<0.05 & PMETA

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA