Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 204(8): 2295-2307, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32179637

RESUMEN

MHC class II (MHCII) expression is usually restricted to APC but can be expressed by cancer cells. We examined the effect of cancer cell-specific MHCII (csMHCII) expression in lung adenocarcinoma on T cell recruitment to tumors and response to anti-PD-1 therapy using two orthotopic immunocompetent murine models of non-small cell lung cancer: CMT167 (CMT) and Lewis lung carcinoma (LLC). We previously showed that CMT167 tumors are eradicated by anti-PD1 therapy, whereas LLC tumors are resistant. RNA sequencing analysis of cancer cells recovered from tumors revealed that csMHCII correlated with response to anti-PD1 therapy, with immunotherapy-sensitive CMT167 cells being csMHCII positive, whereas resistant LLC cells were csMHCII negative. To test the functional effects of csMHCII, MHCII expression was altered on the cancer cells through loss- and gain-of-function of CIITA, a master regulator of the MHCII pathway. Loss of CIITA in CMT167 decreased csMHCII and converted tumors from anti-PD-1 sensitive to anti-PD-1 resistant. This was associated with lower levels of Th1 cytokines, decreased T cell infiltration, increased B cell numbers, and decreased macrophage recruitment. Conversely, overexpression of CIITA in LLC cells resulted in csMHCII in vitro and in vivo. Enforced expression of CIITA increased T cell infiltration and sensitized tumors to anti-PD-1 therapy. csMHCII expression was also examined in a subset of surgically resected human lung adenocarcinomas by multispectral imaging, which provided a survival benefit and positively correlated with T cell infiltration. These studies demonstrate a functional role for csMHCII in regulating T cell infiltration and sensitivity to anti-PD-1.


Asunto(s)
Adenocarcinoma del Pulmón/terapia , Antígenos de Histocompatibilidad Clase II/genética , Neoplasias Pulmonares/terapia , Proteínas Nucleares/genética , Transactivadores/genética , Microambiente Tumoral/genética , Adenocarcinoma del Pulmón/inmunología , Animales , Modelos Animales de Enfermedad , Antígenos de Histocompatibilidad Clase II/inmunología , Neoplasias Pulmonares/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Transactivadores/inmunología , Microambiente Tumoral/inmunología
2.
Semin Cancer Biol ; 61: 11-22, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31546009

RESUMEN

Malignant pleural mesothelioma (MPM) is a rare, yet lethal asbestos-induced cancer and despite marked efforts to reduce occupational exposure, the incidence has not yet significantly declined. Since 2003, combined treatment with a platinum-based agent and pemetrexed has been the first-line therapy and no effective or approved second-line treatments have emerged. The seemingly slow advance in developing new MPM treatments does not appear to be related to a low level of clinical and pre-clinical research activity. Rather, we suggest that a key hurdle in successfully translating basic discovery into novel MPM therapeutics is the underlying assumption that as a rare cancer, it will also be molecularly and genetically homogeneous. In fact, lung adenocarcinoma and melanoma only benefitted from precision oncology upon full appreciation of the high degree of molecular heterogeneity inherent in these cancers, especially regarding the diversity of oncogenic drivers. Herein, we consider the recent explosion of molecular and genetic information that has become available regarding MPM and suggest ways in which the unfolding landscape may guide identification of novel therapeutic vulnerabilities within subsets of MPM that can be targeted in a manner consistent with the tenets of precision oncology.


Asunto(s)
Genómica , Mesotelioma/etiología , Mesotelioma/terapia , Medicina de Precisión , Investigación Biomédica Traslacional , Animales , Biomarcadores de Tumor , Terapia Combinada , Perfilación de la Expresión Génica/métodos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genómica/métodos , Humanos , Mutación con Pérdida de Función , Mesotelioma/diagnóstico , Mesotelioma Maligno/diagnóstico , Mesotelioma Maligno/etiología , Mesotelioma Maligno/terapia , Mutación , Medicina de Precisión/métodos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Investigación Biomédica Traslacional/métodos
3.
Mol Pharmacol ; 100(2): 144-154, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34031188

RESUMEN

The nontaxane microtubule inhibitor eribulin is an approved therapeutic for metastatic breast cancer and liposarcoma. Eribulin was previously tested in unselected patients with lung cancer and yielded a modest objective response rate of ∼5%-12%. Because lung cancers represent diverse histologies and driving oncogenic mutations, we postulated that eribulin may exhibit properties of a precision oncology agent with a previously undefined specificity for a molecularly distinct subset of lung cancers. Herein, we screened a panel of 44 non-small cell and small-cell lung cancer cell lines for in vitro growth sensitivity to eribulin. The results revealed a greater than 15,000-fold range in eribulin sensitivity (IC50 = 0.005-89 nM) among the cell lines that was not correlated with their sensitivity to the taxane-based inhibitor paclitaxel. The quartile of cell lines exhibiting the lowest eribulin IC50 values was not enriched for specific histologies, epithelial-mesenchymal differentiation, or specific oncogene drivers but was significantly enriched for nonsense/frameshift TP53 mutations and low-TP53 mRNA but not missense TP53 mutations. By comparison, the mutation status of cyclin-dependent kinase inhibitor 2A, STK11, and KEAP1 was not associated with eribulin sensitivity. Finally, the highest eribulin IC50 quartile (>1 nM) exhibited significantly elevated mRNA expression of the drug pump, ATP binding cassette B1, defined resistance mechanism to eribulin, and paclitaxel. The findings support further investigations into basic mechanisms by which complete lack of TP53 function regulates anticancer activity of eribulin and the potential utility of TP53 null phenotypes distinct from TP53 missense mutations as a biomarker of response in patients with lung cancer. SIGNIFICANCE STATEMENT: Distinct from precision oncology agents that are matched to cancers bearing oncogenically activated versions of their targets, microtubule inhibitors, such as eribulin, are deployed in an unselected manner. The results in this study demonstrate that lung cancer cell lines exhibiting the highest sensitivity to eribulin bear TP53 null phenotypes, supporting a rationale to consider the status of this tumor suppressor in the clinical setting.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Pequeñas/genética , Furanos/farmacología , Cetonas/farmacología , Neoplasias Pulmonares/genética , Proteína p53 Supresora de Tumor/genética , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Células Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Concentración 50 Inhibidora , Mutación con Pérdida de Función , Neoplasias Pulmonares/tratamiento farmacológico , Medicina de Precisión
4.
J Transl Med ; 19(1): 43, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33485341

RESUMEN

BACKGROUND: Epidermal growth factor receptor (EGFR) is frequently amplified or overexpressed in head and neck squamous cell carcinoma (HNSCC) and is a clinically validated target for the therapeutic antibody, cetuximab, in the management of this cancer. The degree of response to EGFR inhibitors measured by tumor shrinkage varies widely among HNSCC patients, and the biological mechanisms that underlie therapeutic heterogeneity amongst HNSCC patients remain ill-defined. METHODS: EGFR-dependent human and murine HNSCC cell lines were treated with the EGFR/ERBB inhibitors, gefitinib and AZD8931, and submitted to RNAseq, GSEA, and qRT-PCR. Conditioned media was analyzed by ELISA and Luminex assays. Murine HNSCC tumors were stained for T cell markers by immunofluorescence. Primary HSNCC patient specimens treated with single agent cetuximab were stained with Vectra multispectral immunofluorescence. RESULTS: The transcriptional reprogramming response to EGFR/ERBB-specific TKIs was measured in a panel of EGFR-dependent human HNSCC cell lines and interferon (IFN) α and γ responses identified as top-ranked TKI-induced pathways. Despite similar drug sensitivity, responses among 7 cell lines varied quantitatively and qualitatively, especially regarding the induced chemokine and cytokine profiles. Of note, the anti-tumorigenic chemokine, CXCL10, and the pro-tumorigenic factor, IL6, exhibited wide-ranging and non-overlapping induction. Similarly, AZD8931 exerted potent growth inhibition, IFNα/IFNγ pathway activation, and CXCL10 induction in murine B4B8 HNSCC cells. AZD8931 treatment of immune-competent mice bearing orthotopic B4B8 tumors increased CD8 + T cell content and the therapeutic response was abrogated in nu/nu mice relative to BALB/c mice. Finally, Vectra 3.0 analysis of HNSCC patient tumors prior to and after 3-4 weeks of single agent cetuximab treatment revealed increased CD8 + T cell content in specimens from patients exhibiting a therapeutic response relative to non-responders. CONCLUSIONS: The findings reveal heterogeneous, tumor cell-intrinsic, EGFR/ERBB inhibitor-induced IFN pathway activation in HNSCC and suggest that individual tumor responses to oncogene-targeted agents are a sum of direct growth inhibitory effects and variably-induced participation of host immune cells.


Asunto(s)
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Línea Celular Tumoral , Cetuximab/farmacología , Cetuximab/uso terapéutico , Receptores ErbB , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Interferones , Ratones , Ratones Endogámicos BALB C , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico
5.
Mol Pharmacol ; 95(1): 20-32, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30404891

RESUMEN

Calcineurin (CaN) phosphatase signaling is regulated by targeting CaN to substrates, inhibitors, and scaffold proteins containing docking motifs with the consensus sequence of PxIxIT. Here, we identify the docking of CaN to the γ isoform of MKK7, a component of the c-Jun N-terminal kinase (JNK) pathway. Because of alternative splicing of a single exon within the N-terminal domain, MKK7γ encodes a unique PxIxIT motif (PIIVIT) that is not present in MKK7α or ß We found that MKK7γ bound directly to CaN through this PIIVIT motif in vitro, immunoprecipitated with CaN from cell extracts, and exhibited fluorescence resonance energy transfer (FRET) with CaN in the cytoplasm but not in the nucleus of living cells. In contrast, MKK7α and ß exhibited no direct binding or FRET with CaN and were localized more in the nucleus than the cytoplasm. Furthermore, the inhibition of CaN phosphatase activity increased the basal phosphorylation of MKK7γ but not MKK7ß Deletion of the MKK7γ PIIVIT motif eliminated FRET with CaN and promoted MKK7γ redistribution to the nucleus; however, the inhibition of CaN activity did not alter MKK7γ localization, indicating that MKK7γ cytoplasmic retention by CaN is phosphatase activity independent. Finally, the inhibition of CaN phosphatase activity in vascular smooth muscle cells, which express MKK7γ mRNA, enhances JNK activation. Overall, we conclude that the MKK7γ-specific PxIxIT motif promotes high-affinity CaN binding that could promote novel cross talk between CaN and JNK signaling by limiting MKK7γ phosphorylation and restricting its localization to the cytoplasm.


Asunto(s)
MAP Quinasa Quinasa 7/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Unión Proteica/fisiología , Isoformas de Proteínas/metabolismo , Empalme Alternativo/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión/fisiología , Células COS , Línea Celular , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citoplasma/metabolismo , Células HEK293 , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Fosforilación/fisiología , Transducción de Señal/fisiología
6.
Mol Pharmacol ; 96(6): 862-870, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31554698

RESUMEN

The inhibitory epidermal growth factor receptor (EGFR) antibody, cetuximab, is an approved therapy for head and neck squamous cell carcinoma (HNSCC). Despite tumor response observed in some HNSCC patients, cetuximab alone or combined with radio- or chemotherapy fails to yield long-term control or cures. We hypothesize that a flexible receptor tyrosine kinase coactivation signaling network supports HNSCC survival in the setting of EGFR blockade, and that drugs disrupting this network will provide superior tumor control when combined with EGFR inhibitors. In this work, we submitted EGFR-dependent HNSCC cell lines to RNA interference-based functional genomics screens to identify, in an unbiased fashion, essential protein kinases for growth and survival as well as synthetic lethal targets for combined inhibition with EGFR antagonists. Mechanistic target of rapamycin kinase (MTOR) and erythroblastosis oncogene B (ERBB)3 were identified as high-ranking essential kinase hits in the HNSCC cell lines. MTOR dependency was confirmed by distinct short hairpin RNAs (shRNAs) and high sensitivity of the cell lines to AZD8055, whereas ERBB3 dependency was validated by shRNA-mediated silencing. Furthermore, a synthetic lethal kinome shRNA screen with a pan-ERBB inhibitor, AZD8931, identified multiple components of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway, consistent with ERK reactivation and/or incomplete ERK pathway inhibition in response to EGFR inhibitor monotherapy. As validation, distinct mitogen-activated protein kinase kinase (MEK) inhibitors yielded synergistic growth inhibition when combined with the EGFR inhibitors, gefitinib and AZD8931. The findings identify ERBB3 and MTOR as important pharmacological vulnerabilities in HNSCC and support combining MEK and EGFR inhibitors to enhance clinical efficacy in HNSCC. SIGNIFICANCE STATEMENT: Many cancers are driven by nonmutated receptor tyrosine kinase coactivation networks that defy full inhibition with single targeted drugs. This study identifies erythroblastosis oncogene B (ERBB)3 as an essential protein kinase in epidermal growth factor receptor-dependent head and neck squamous cell cancer (HNSCC) cell lines and a synthetic lethal interaction with the extracellular signal-regulated kinase mitogen-activated protein kinase pathway that provides a rationale for combining pan-ERBB and mitogen-activated protein kinase inhibitors as a therapeutic approach in subsets of HNSCC.


Asunto(s)
Proteínas Quinasas/metabolismo , Interferencia de ARN/fisiología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Animales , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Ratones , Proteínas Quinasas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
7.
Mol Cancer ; 17(1): 60, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29458371

RESUMEN

Receptor tyrosine kinase (RTK) pathways serve as frequent oncogene drivers in solid cancers and small molecule and antibody-based inhibitors have been developed as targeted therapeutics for many of these oncogenic RTKs. In general, these drugs, when delivered as single agents in a manner consistent with the principles of precision medicine, induce tumor shrinkage but rarely complete tumor elimination. Moreover, acquired resistance of treated tumors is nearly invariant such that monotherapy strategies with targeted RTK drugs fail to provide long-term control or cures. The mechanisms mediating acquired resistance in tumors at progression treated with RTK inhibitors are relatively well defined compared to the molecular and cellular understanding of the cancer cells that persist early on therapy. We and others propose that these persisting cancer cells, termed "residual disease", provide the reservoir from which acquired resistance eventually emerges. Herein, we will review the literature that describes rapid reprogramming induced upon inhibition of oncogenic RTKs in cancer cells as a mechanism by which cancer cells persist to yield residual disease and consider strategies for disrupting these intrinsic responses for future therapeutic gain.


Asunto(s)
Reprogramación Celular/efectos de los fármacos , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Reprogramación Celular/genética , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal/efectos de los fármacos
8.
Bioinformatics ; 31(23): 3799-806, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26206305

RESUMEN

MOTIVATION: Targeted kinase inhibitors have dramatically improved cancer treatment, but kinase dependency for an individual patient or cancer cell can be challenging to predict. Kinase dependency does not always correspond with gene expression and mutation status. High-throughput drug screens are powerful tools for determining kinase dependency, but drug polypharmacology can make results difficult to interpret. RESULTS: We developed Kinase Addiction Ranker (KAR), an algorithm that integrates high-throughput drug screening data, comprehensive kinase inhibition data and gene expression profiles to identify kinase dependency in cancer cells. We applied KAR to predict kinase dependency of 21 lung cancer cell lines and 151 leukemia patient samples using published datasets. We experimentally validated KAR predictions of FGFR and MTOR dependence in lung cancer cell line H1581, showing synergistic reduction in proliferation after combining ponatinib and AZD8055. AVAILABILITY AND IMPLEMENTATION: KAR can be downloaded as a Python function or a MATLAB script along with example inputs and outputs at: http://tanlab.ucdenver.edu/KAR/. CONTACT: aikchoon.tan@ucdenver.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Resistencia a Antineoplásicos/genética , Leucemia/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Perfilación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Immunoblotting , Leucemia/genética , Leucemia/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Células Tumorales Cultivadas
9.
BMC Genomics ; 16 Suppl 12: S2, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26681397

RESUMEN

BACKGROUND: Triple-Negative Breast Cancer (TNBC) is an aggressive disease with a poor prognosis. Clinically, TNBC patients have limited treatment options besides chemotherapy. The goal of this study was to determine the kinase dependency in TNBC cell lines and to predict compounds that could inhibit these kinases using integrative bioinformatics analysis. RESULTS: We integrated publicly available gene expression data, high-throughput pharmacological profiling data, and quantitative in vitro kinase binding data to determine the kinase dependency in 12 TNBC cell lines. We employed Kinase Addiction Ranker (KAR), a novel bioinformatics approach, which integrated these data sources to dissect kinase dependency in TNBC cell lines. We then used the kinase dependency predicted by KAR for each TNBC cell line to query K-Map for compounds targeting these kinases. We validated our predictions using published and new experimental data. CONCLUSIONS: In summary, we implemented an integrative bioinformatics analysis that determines kinase dependency in TNBC. Our analysis revealed candidate kinases as potential targets in TNBC for further pharmacological and biological studies.


Asunto(s)
Biología Computacional/métodos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/genética , Neoplasias de la Mama Triple Negativas/enzimología , Algoritmos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Bases de Datos Genéticas , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Quinasas/metabolismo , Neoplasias de la Mama Triple Negativas/genética
10.
Bioinformatics ; 30(17): 2393-8, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24812339

RESUMEN

MOTIVATION: Non-small-cell lung cancer (NSCLC) is the leading cause of cancer death in the United States. Targeted tyrosine kinase inhibitors (TKIs) directed against the epidermal growth factor receptor (EGFR) have been widely and successfully used in treating NSCLC patients with activating EGFR mutations. Unfortunately, the duration of response is short-lived, and all patients eventually relapse by acquiring resistance mechanisms. RESULT: We performed an integrative systems biology approach to determine essential kinases that drive EGFR-TKI resistance in cancer cell lines. We used a series of bioinformatics methods to analyze and integrate the functional genetics screen and RNA-seq data to identify a set of kinases that are critical in survival and proliferation in these TKI-resistant lines. By connecting the essential kinases to compounds using a novel kinase connectivity map (K-Map), we identified and validated bosutinib as an effective compound that could inhibit proliferation and induce apoptosis in TKI-resistant lines. A rational combination of bosutinib and gefitinib showed additive and synergistic effects in cancer cell lines resistant to EGFR TKI alone. CONCLUSIONS: We have demonstrated a bioinformatics-driven discovery roadmap for drug repurposing and development in overcoming resistance in EGFR-mutant NSCLC, which could be generalized to other cancer types in the era of personalized medicine. AVAILABILITY AND IMPLEMENTATION: K-Map can be accessible at: http://tanlab.ucdenver.edu/kMap. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/farmacología , Compuestos de Anilina/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Biología Computacional , Resistencia a Antineoplásicos/genética , Gefitinib , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Nitrilos/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas/genética , Quinazolinas/farmacología , Quinolinas/farmacología , Análisis de Secuencia de ARN
11.
Carcinogenesis ; 35(7): 1636-42, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24743512

RESUMEN

Recently, SOX2 has been identified as a potential lineage-specific oncogene in lung squamous cell carcinomas. Since head and neck squamous cell carcinomas (HNSCC) are morphologically and clinically highly related to lung squamous cell carcinomas, we hypothesized that SOX2 also plays an oncogenic role in this tumor entity. We assembled a cohort of 496 patients with HNSCC, including 253 metastases and 135 recurrences. SOX2 amplification (FISH) and SOX2 protein expression (immunohistochemistry) were correlated with molecular and clinicopathological parameters. In order to investigate the functional role of SOX2 in human HNSCC, SOX2 knockdown and overexpression in SCC-25 cells were generated by lentiviral constructs and subjected to cell cycle analysis, proliferation and apoptosis assays. Furthermore, SOX2 expression was correlated with the expression of proliferation and apoptosis-related proteins in primary HNSCC samples. SOX2 amplification was detected in 21% of primary HNSCC and mostly observed in a concordant manner between primary tumors and corresponding metastatic tissues. Overall, SOX2 amplification resulted in protein overexpression and was mutually exclusive with human papillomavirus infection. SOX2 protein overexpression was associated with clinicopathological parameters of worse outcome. Functionally, SOX2 induced the expression of the antiapoptotic protein BCL-2 and enhanced resistance to apoptosis-inducing agents including cisplatin, indicating SOX2 as a mediator of therapy resistance in human HNSCC. Targeting SOX2 and related molecular downstream pathways such as BCL-2 may enhance therapy efficacy in SOX2-expressing HNSCC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Factores de Transcripción SOXB1/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Western Blotting , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/secundario , Proliferación Celular , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Humanos , Técnicas para Inmunoenzimas , Hibridación Fluorescente in Situ , Metástasis Linfática , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1/genética , Tasa de Supervivencia , Células Tumorales Cultivadas
12.
Mol Pharmacol ; 83(4): 882-93, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23371912

RESUMEN

Our laboratory has previously shown that some gefitinib-insensitive head and neck squamous cell carcinoma (HNSCC) cell lines exhibit dominant autocrine fibroblast growth factor receptor (FGFR) signaling. Herein, we deployed a whole-genome loss-of-function screen to identify genes whose knockdown potentiated the inhibitory effect of the FGFR inhibitor, AZ8010, in HNSCC cell lines. Three HNSCC cell lines expressing a genome-wide small hairpin RNA (shRNA) library were treated with AZ8010 and the abundance of shRNA sequences was assessed by deep sequencing. Under-represented shRNAs in treated cells are expected to target genes important for survival with AZ8010 treatment. Synthetic lethal hits were validated with specific inhibitors and independent shRNAs. We found that multiple alternate receptors provided protection from FGFR inhibition, including receptor tyrosine kinases (RTKs), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ERBB2), and hepatocyte growth factor receptor (MET). We showed that specific knockdown of either ERBB2 or MET in combination with FGFR inhibition led to increased inhibition of growth relative to FGFR tyrosine kinase inhibitor (TKI) treatment alone. These results were confirmed using specific small molecule inhibitors of either ERBB family members or MET. Moreover, the triple combination of FGFR, MET, and ERBB family inhibitors showed the largest inhibition of growth and induction of apoptosis compared with the double combinations. These results reveal a role for alternate RTKs in maintaining progrowth and survival signaling in HNSCC cells in the setting of FGFR inhibition. Thus, improved therapies for HNSCC patients could involve rationally designed combinations of TKIs targeting FGFR, ERBB family members, and MET.


Asunto(s)
Receptores ErbB/fisiología , Neoplasias de Cabeza y Cuello/patología , Proteínas Oncogénicas v-erbB/fisiología , Proteínas Proto-Oncogénicas c-met/fisiología , Receptor ErbB-2/fisiología , Receptores de Factores de Crecimiento de Fibroblastos/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Receptores ErbB/antagonistas & inhibidores , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/fisiología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Proteínas Oncogénicas v-erbB/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptor ErbB-2/antagonistas & inhibidores , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores
13.
Mod Pathol ; 26(10): 1298-306, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23619603

RESUMEN

Recently, we characterized fibroblast growth factor receptor 1 amplification as a target for a rational therapy in lung squamous cell carcinoma. Patients harboring this genetic event are currently eligible for treatment with antifibroblast growth factor receptor small-molecule inhibitors in phase I clinical trials. This has the potential to significantly improve standard therapy for lung squamous cell carcinoma patients. The aim of this study was to elucidate whether fibroblast growth factor receptor 1 amplification is also a common genetic event in head and neck squamous cell carcinoma. For this purpose, we assembled a cohort of 555 patients, including 264 with metastatic disease and 147 with recurrent disease. Formalin-fixed, paraffin-embedded material of primary tumors, metastases and recurrences were assessed for fibroblast growth factor receptor 1 copy number status using fluorescence in situ hybridization. Human papilloma virus status was detected by p16 immunohistochemistry staining and PCR-ELISA. Molecular parameters were correlated with each other and with clinicopathological data. We found 15% of primary head and neck squamous cell carcinoma to display a fibroblast growth factor receptor 1 amplification. In nearly all cases, metastatic and recurrent tumor samples shared the same amplification status as the corresponding primary tumor. Fibroblast growth factor receptor 1 amplification was associated with nicotine and alcohol consumption, but was mutually exclusive with human papilloma virus infection. Amplification of the gene was associated with parameters of worse outcome. Our data identify fibroblast growth factor receptor 1 amplification as a frequent event in primary and metastatic head and neck squamous cell carcinoma and represents a potential biomarker for more aggressive disease. Fibroblast growth factor receptor 1-amplified tumors could potentially comprise a subset of head and neck squamous cell carcinoma against which targeted small-molecule inhibitors hold therapeutic efficacy.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Amplificación de Genes , Neoplasias de Cabeza y Cuello/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Anciano , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Femenino , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo
14.
Digestion ; 88(3): 172-81, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24135816

RESUMEN

BACKGROUND/AIMS: Resembling a potential therapeutic drug target, fibroblast growth factor receptor 1 (FGFR1) amplification and expression was assessed in 515 human colorectal cancer (CRC) tissue samples, lymph node metastases and CRC cell lines. METHODS: FGFR1 amplification status was determined using fluorescence in situ hybridization. Additionally, we assessed protein levels employing Western blots and immunohistochemistry. The FGFR1 mRNA localization was analyzed using mRNA in situ hybridization. Functional studies employed the FGFR inhibitor NVP-BGJ398. RESULTS: Of 454 primary CRCs, 24 displayed FGFR1 amplification. 92/94 lymph node metastases presented the same amplification status as the primary tumor. Of 99 investigated tumors, 18 revealed membranous activated pFGFR1 protein. FGFR1 mRNA levels were independent of the amplification status or pFGFR1 protein occurrence. In vitro, a strong antiproliferative effect of NVP-BGJ398 could be detected in cell lines exhibiting high FGFR1 protein. CONCLUSION: FGFR1 is a potential therapeutic target in a subset of CRC. FGFR1 protein is likely to represent a central factor limiting the efficacy of FGFR inhibitors. The lack of correlation between its evaluation at genetic/mRNA level and its protein occurrence indicates that the assessment of the receptor at an immunohistochemical level most likely represents a suitable way to assess FGFR1 as a predictive biomarker for patient selection in future clinical trials.


Asunto(s)
Adenocarcinoma/genética , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , ARN Mensajero/análisis , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Adenocarcinoma/metabolismo , Anciano , Antineoplásicos/farmacología , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Ganglios Linfáticos/metabolismo , Metástasis Linfática , Masculino , Persona de Mediana Edad , Compuestos de Fenilurea/farmacología , Pirimidinas/farmacología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo
15.
Front Oncol ; 13: 1094123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845684

RESUMEN

Introduction: The KRAS(G12C) mutation is the most common genetic mutation in North American lung adenocarcinoma patients. Recently, direct inhibitors of the KRASG12C protein have been developed and demonstrate clinical response rates of 37-43%. Importantly, these agents fail to generate durable therapeutic responses with median progression-free survival of ~6.5 months. Methods: To provide models for further preclinical improvement of these inhibitors, we generated three novel murine KRASG12C-driven lung cancer cell lines. The co-occurring NRASQ61L mutation in KRASG12C-positive LLC cells was deleted and the KRASG12V allele in CMT167 cells was edited to KRASG12C with CRISPR/Cas9 methods. Also, a novel murine KRASG12C line, mKRC.1, was established from a tumor generated in a genetically-engineered mouse model. Results: The three lines exhibit similar in vitro sensitivities to KRASG12C inhibitors (MRTX-1257, MRTX-849, AMG-510), but distinct in vivo responses to MRTX-849 ranging from progressive growth with orthotopic LLC-NRAS KO tumors to modest shrinkage with mKRC.1 tumors. All three cell lines exhibited synergistic in vitro growth inhibition with combinations of MRTX-1257 and the SHP2/PTPN11 inhibitor, RMC-4550. Moreover, treatment with a MRTX-849/RMC-4550 combination yielded transient tumor shrinkage in orthotopic LLC-NRAS KO tumors propagated in syngeneic mice and durable shrinkage of mKRC.1 tumors. Notably, single-agent MRTX-849 activity in mKRC.1 tumors and the combination response in LLC-NRAS KO tumors was lost when the experiments were performed in athymic nu/nu mice, supporting a growing literature demonstrating a role for adaptive immunity in the response to this class of drugs. Discussion: These new models of murine KRASG12C mutant lung cancer should prove valuable for identifying improved therapeutic combination strategies with KRASG12C inhibitors.

16.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066347

RESUMEN

CRISPR/Cas9 gene editing technology is an indispensable and powerful tool in the field of cancer biology. To conduct successful CRISPR-based experiments, it is crucial that sgRNAs generate their designed alterations. Here, we describe a simple and efficient sgRNA screening method for validating sgRNAs that generate oncogenic gene rearrangements. We used IL3-independence in Ba/F3 cells as an assay to identify sgRNA pairs that generate fusion oncogenes involving the Ret and Ntrk1 tyrosine kinases. We confirmed these rearrangements with PCR or RT-PCR as well as sequencing. Ba/F3 cells harboring Ret or Ntrk1 rearrangements acquired sensitivity to RET and TRK inhibitors, respectively. Adenoviruses encoding Cas9 and sgRNAs that catalyze the Kif5b-Ret and Trim24-Ret rearrangements were intratracheally instilled into mice and yielded lung adenocarcinomas. A cell line (TR.1) was established from a Trim24-Ret positive tumor that exhibited high in vitro sensitivity to RET-specific TKIs. Moreover, orthotopic transplantation of TR.1 cells into the left lung yielded well-defined tumors that shrank in response to LOXO-292 treatment. The method offers an efficient means to validate sgRNAs that successfully target their intended loci for the generation of novel murine oncogene-driven tumor models.

17.
Biol Open ; 12(8)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37470475

RESUMEN

CRISPR/Cas9 gene editing represents a powerful tool for investigating fusion oncogenes in cancer biology. Successful experiments require that sgRNAs correctly associate with their target sequence and initiate double stranded breaks which are subsequently repaired by endogenous DNA repair systems yielding fusion chromosomes. Simple tests to ensure sgRNAs are functional are not generally available and often require single cell cloning to identify successful CRISPR-editing events. Here, we describe a novel method relying on acquisition of IL3-independence in Ba/F3 cells to identify sgRNA pairs that generate oncogenic gene rearrangements of the Ret and Ntrk1 tyrosine kinases. The rearrangements were confirmed with PCR, RT-PCR and sequencing and Ba/F3 cells harboring Ret or Ntrk1 rearrangements acquired sensitivity to RET and TRK inhibitors, respectively. Adenoviruses encoding Cas9 and sgRNA pairs inducing the Kif5b-Ret and Trim24-Ret rearrangements were intratracheally instilled into mice and yielded lung adenocarcinomas. A cell line (TR.1) established from a Trim24-Ret positive tumor exhibited high in vitro sensitivity to the RET inhibitors LOXO-292 and BLU-667 and orthotopic TR.1 cell-derived tumors underwent marked shrinkage upon LOXO-292 treatment. Thus, the method offers an efficient means to validate sgRNAs that successfully target their intended loci for the generation of novel, syngeneic murine oncogene-driven tumor models.


Asunto(s)
Oncogenes , ARN Guía de Sistemas CRISPR-Cas , Animales , Ratones , Inhibidores de Proteínas Quinasas/farmacología
18.
Cancer Lett ; 556: 216062, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657561

RESUMEN

Lung cancers bearing oncogenically-mutated EGFR represent a significant fraction of lung adenocarcinomas (LUADs) for which EGFR-targeting tyrosine kinase inhibitors (TKIs) provide a highly effective therapeutic approach. However, these lung cancers eventually acquire resistance and undergo progression within a characteristically broad treatment duration range. Our previous study of EGFR mutant lung cancer patient biopsies highlighted the positive association of a TKI-induced interferon γ transcriptional response with increased time to treatment progression. To test the hypothesis that host immunity contributes to the TKI response, we developed novel genetically-engineered mouse models of EGFR mutant lung cancer bearing exon 19 deletions (del19) or the L860R missense mutation. Both oncogenic EGFR mouse models developed multifocal LUADs from which transplantable cancer cell lines sensitive to the EGFR-specific TKIs, gefitinib and osimertinib, were derived. When propagated orthotopically in the left lungs of syngeneic C57BL/6 mice, deep and durable shrinkage of the cell line-derived tumors was observed in response to daily treatment with osimertinib. By contrast, orthotopic tumors propagated in immune deficient nu/nu or Rag1-/- mice exhibited modest tumor shrinkage followed by rapid progression on continuous osimertinib treatment. Importantly, osimertinib treatment significantly increased intratumoral T cell content and decreased neutrophil content relative to diluent treatment. The findings provide strong evidence supporting the requirement for adaptive immunity in the durable therapeutic control of EGFR mutant lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Resistencia a Antineoplásicos , Receptores ErbB/metabolismo , Ratones Endogámicos C57BL , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Compuestos de Anilina/farmacología , Inmunidad Adaptativa , Mutación
19.
NPJ Precis Oncol ; 7(1): 15, 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739466

RESUMEN

Lung cancers bearing oncogenic EML4-ALK fusions respond to targeted tyrosine kinase inhibitors (TKIs; e.g., alectinib), with variation in the degree of shrinkage and duration of treatment (DOT). However, factors that control this response are not well understood. While the contribution of the immune system in mediating the response to immunotherapy has been extensively investigated, less is known regarding the contribution of immunity to TKI therapeutic responses. We previously demonstrated a positive association of a TKI-induced interferon gamma (IFNγ) transcriptional response with DOT in EGFR-mutant lung cancers. Herein, we used three murine models of EML4-ALK lung cancer to test the role for host immunity in the alectinib therapeutic response. The cell lines (EA1, EA2, EA3) were propagated orthotopically in the lungs of immunocompetent and immunodeficient mice and treated with alectinib. Tumor volumes were serially measured by µCT and immune cell content was measured by flow cytometry and multispectral immunofluorescence. Transcriptional responses to alectinib were assessed by RNAseq and secreted chemokines were measured by ELISA. All cell lines were similarly sensitive to alectinib in vitro and as orthotopic tumors in immunocompetent mice, exhibited durable shrinkage. However, in immunodeficient mice, all tumor models rapidly progressed on TKI therapy. In immunocompetent mice, EA2 tumors exhibited a complete response, whereas EA1 and EA3 tumors retained residual disease that rapidly progressed upon termination of TKI treatment. Prior to treatment, EA2 tumors had greater numbers of CD8+ T cells and fewer neutrophils compared to EA1 tumors. Also, RNAseq of cancer cells recovered from untreated tumors revealed elevated levels of CXCL9 and 10 in EA2 tumors, and higher levels of CXCL1 and 2 in EA1 tumors. Analysis of pre-treatment patient biopsies from ALK+ tumors revealed an association of neutrophil content with shorter time to progression. Combined, these data support a role for adaptive immunity in durability of TKI responses and demonstrate that the immune cell composition of the tumor microenvironment is predictive of response to alectinib therapy.

20.
Nat Commun ; 13(1): 3535, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725568

RESUMEN

Differential outcomes of EphB4-ephrinB2 signaling offers formidable challenge for the development of cancer therapeutics. Here, we interrogate the effects of targeting EphB4 and ephrinB2 in head and neck squamous cell carcinoma (HNSCC) and within its microenvironment using genetically engineered mice, recombinant constructs, pharmacologic agonists and antagonists. We observe that manipulating the EphB4 intracellular domain on cancer cells accelerates tumor growth and angiogenesis. EphB4 cancer cell loss also triggers compensatory upregulation of EphA4 and T regulatory cells (Tregs) influx and their targeting results in reversal of accelerated tumor growth mediated by EphB4 knockdown. EphrinB2 knockout on cancer cells and vasculature, on the other hand, results in maximal tumor reduction and vascular normalization. We report that EphB4 agonism provides no additional anti-tumoral benefit in the absence of ephrinB2. These results identify ephrinB2 as a tumor promoter and its receptor, EphB4, as a tumor suppressor in HNSCC, presenting opportunities for rational drug design.


Asunto(s)
Efrina-B2 , Neoplasias de Cabeza y Cuello , Receptor EphB4 , Carcinoma de Células Escamosas de Cabeza y Cuello , Animales , Efrina-B2/genética , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Ratones , Receptor EphB4/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA