Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-30533693

RESUMEN

We present here the complete genomes of 18 phages that infect Paenibacillus larvae, the causative agent of American foulbrood in honeybees. The phages were isolated between 2014 and 2016 as part of an undergraduate phage discovery course at Brigham Young University. The phages were isolated primarily from bee debris and lysogens.

2.
PLoS One ; 11(6): e0156838, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27304881

RESUMEN

Brevibacillus laterosporus is a spore-forming bacterium that causes a secondary infection in beehives following European Foulbrood disease. To better understand the contributions of Brevibacillus bacteriophages to the evolution of their hosts, five novel phages (Jenst, Osiris, Powder, SecTim467, and Sundance) were isolated and characterized. When compared with the five Brevibacillus phages currently in NCBI, these phages were assigned to clusters based on whole genome and proteome synteny. Powder and Osiris, both myoviruses, were assigned to the previously described Jimmer-like cluster. SecTim467 and Jenst, both siphoviruses, formed a novel phage cluster. Sundance, a siphovirus, was assigned as a singleton phage along with the previously isolated singleton, Emery. In addition to characterizing the basic relationships between these phages, several genomic features were observed. A motif repeated throughout phages Jenst and SecTim467 was frequently upstream of genes predicted to function in DNA replication, nucleotide metabolism, and transcription, suggesting transcriptional co-regulation. In addition, paralogous gene pairs that encode a putative transcriptional regulator were identified in four Brevibacillus phages. These paralogs likely evolved to bind different DNA sequences due to variation at amino acid residues predicted to bind specific nucleotides. Finally, a putative transposable element was identified in SecTim467 and Sundance that carries genes homologous to those found in Brevibacillus chromosomes. Remnants of this transposable element were also identified in phage Jenst. These discoveries provide a greater understanding of the diversity of phages, their behavior, and their evolutionary relationships to one another and to their host. In addition, they provide a foundation with which further Brevibacillus phages can be compared.


Asunto(s)
Bacteriófagos/genética , Brevibacillus/virología , Genoma Viral/genética , Genómica/métodos , Secuencia de Aminoácidos , Bacteriófagos/clasificación , Bacteriófagos/metabolismo , Secuencia de Bases , Replicación del ADN , ADN Viral/genética , Regulación Viral de la Expresión Génica , Variación Genética , Microscopía Electrónica de Transmisión , Filogenia , Proteómica/métodos , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/genética , Virión/metabolismo , Virión/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA