Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38871949

RESUMEN

Complex mixtures of chemicals present in groundwater at legacy-contaminated industrial sites can pose significant risks to adjacent surface waters. The combination of short-term molecular and chronic apical effect assessments is a promising approach to characterize the potential hazard of such complex mixtures. The objectives of this study were to: (1) assess the apical effects (survival, growth, development, and liver histopathology) after chronic exposure of early life stages (ELSs) of fathead minnows (FHM; Pimephales promelas) to contaminated groundwater from a legacy-contaminated pesticide manufacturing and packaging plant, and (2) identify possible molecular mechanisms responsible for these effects by comparing results to mechanistic outcomes previously determined by a short-term reduced transcriptome assay (EcoToxChips). This study revealed a significant increase in mortality and prevalence of spinal curvatures, as well as a significant reduction in the length of FHMs exposed to the groundwater mixtures in a concentration-dependent manner. There was an increasing trend in the prevalence of edema in FHMs, though not significantly different from controls. Additionally, no histopathological effects were observed in the liver of FHMs exposed to the groundwater mixtures. Short-term molecular outcomes determined in a parallel study were found to be informative of chronic apical outcomes, including cardiotoxicity, spinal deformities, and liver toxicity. Overall, the results observed in this study demonstrated that short-term transcriptomics analyses could support the hazard assessment of complex contaminated sites.

2.
Basic Res Cardiol ; 118(1): 13, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36988697

RESUMEN

The prospective use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) for cardiac regenerative medicine strongly depends on the electro-mechanical properties of these cells, especially regarding the Ca2+-dependent excitation-contraction (EC) coupling mechanism. Currently, the immature structural and functional features of hiPSC-CM limit the progression towards clinical applications. Here, we show that a specific microarchitecture is essential for functional maturation of hiPSC-CM. Structural remodelling towards a cuboid cell shape and induction of BIN1, a facilitator of membrane invaginations, lead to transverse (t)-tubule-like structures. This transformation brings two Ca2+ channels critical for EC coupling in close proximity, the L-type Ca2+ channel at the sarcolemma and the ryanodine receptor at the sarcoplasmic reticulum. Consequently, the Ca2+-dependent functional interaction of these channels becomes more efficient, leading to improved spatio-temporal synchronisation of Ca2+ transients and higher EC coupling gain. Thus, functional maturation of hiPSC-cardiomyocytes by optimised cell microarchitecture needs to be considered for future cardiac regenerative approaches.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Acoplamiento Excitación-Contracción , Señalización del Calcio , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo
3.
Environ Sci Technol ; 57(50): 21071-21079, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38048442

RESUMEN

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) is a recently identified contaminant that originates from the oxidation of the tire antidegradant 6PPD. 6PPD-Q is acutely toxic to select salmonids at environmentally relevant concentrations, while other fish species display tolerance to concentrations that surpass those measured in the environment. The reasons for these marked differences in sensitivity are presently unknown. The objective of this research was to explore potential toxicokinetic drivers of species sensitivity by characterizing biliary metabolites of 6PPD-Q in sensitive and tolerant fishes. For the first time, we identified an O-glucuronide metabolite of 6PPD-Q using high-resolution mass spectrometry. The semiquantified levels of this metabolite in tolerant species or life stages, including white sturgeon (Acipenser transmontanus), chinook salmon (Oncorhynchus tshawytscha), westslope cutthroat trout (Oncorhynchus clarkii lewisi), and nonfry life stages of Atlantic salmon (Salmo salar), were greater than those in sensitive species, including coho salmon (Oncorhynchus kisutch), brook trout (Salvelinus fontinalis), and rainbow trout (Oncorhynchus mykiss), suggesting that tolerant species might detoxify 6PPD-Q more effectively. Thus, we hypothesize that differences in species sensitivity are a result of differences in basal expression of biotransformation enzyme across various fish species. Moreover, the semiquantification of 6PPD-Q metabolites in bile extracted from wild-caught fish might be a useful biomarker of exposure to 6PPD-Q, thereby being valuable to environmental monitoring and risk assessment.


Asunto(s)
Benzoquinonas , Fenilendiaminas , Salmón , Trucha , Contaminantes Químicos del Agua , Animales , Fenilendiaminas/análisis , Fenilendiaminas/metabolismo , Fenilendiaminas/toxicidad , Benzoquinonas/análisis , Benzoquinonas/metabolismo , Benzoquinonas/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Salmón/metabolismo , Trucha/metabolismo , Bilis/química , Bilis/metabolismo
4.
Cell Mol Life Sci ; 79(2): 93, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075545

RESUMEN

Arterial hypertension causes left ventricular hypertrophy leading to dilated cardiomyopathy. Following compensatory cardiomyocyte hypertrophy, cardiac dysfunction develops due to loss of cardiomyocytes preceded or paralleled by cardiac fibrosis. Zyxin acts as a mechanotransducer in vascular cells that may promote cardiomyocyte survival. Here, we analyzed cardiac function during experimental hypertension in zyxin knockout (KO) mice. In zyxin KO mice, made hypertensive by way of deoxycorticosterone acetate (DOCA)-salt treatment telemetry recording showed an attenuated rise in systolic blood pressure. Echocardiography indicated a systolic dysfunction, and isolated working heart measurements showed a decrease in systolic elastance. Hearts from hypertensive zyxin KO mice revealed increased apoptosis, fibrosis and an upregulation of active focal adhesion kinase as well as of integrins α5 and ß1. Both interstitial and perivascular fibrosis were even more pronounced in zyxin KO mice exposed to angiotensin II instead of DOCA-salt. Stretched microvascular endothelial cells may release collagen 1α2 and TGF-ß, which is characteristic for the transition to an intermediate mesenchymal phenotype, and thus spur the transformation of cardiac fibroblasts to myofibroblasts resulting in excessive scar tissue formation in the heart of hypertensive zyxin KO mice. While zyxin KO mice per se do not reveal a cardiac phenotype, this is unmasked upon induction of hypertension and owing to enhanced cardiomyocyte apoptosis and excessive fibrosis causes cardiac dysfunction. Zyxin may thus be important for the maintenance of cardiac function in spite of hypertension.


Asunto(s)
Angiotensina II/toxicidad , Cardiomegalia/prevención & control , Fibrosis/prevención & control , Hipertensión/complicaciones , Miocitos Cardíacos/citología , Zixina/fisiología , Animales , Apoptosis , Presión Sanguínea , Cardiomegalia/etiología , Cardiomegalia/patología , Fibrosis/etiología , Fibrosis/patología , Hipertensión/inducido químicamente , Hipertensión/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo
5.
Pflugers Arch ; 474(2): 231-242, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34797426

RESUMEN

The distribution of atherosclerotic lesions in the aorta and its branches of ApoE knockout (ApoE-/-) mice is like that of patients with atherosclerosis. By using high-resolution MALDI mass spectrometry imaging (MSI), we aimed at characterizing universally applicable physiological biomarkers by comparing the murine lipid marker profile with that of human atherosclerotic arteries. Therefore, the aorta or carotid artery of male ApoE-/- mice at different ages, human arteries with documented atherosclerotic changes originated from amputated limbs, and corresponding controls were analysed. Obtained data were subjected to multivariate statistical analysis to identify potential biomarkers. Thirty-one m/z values corresponding to individual lipid species of cholesterol esters, lysophosphatidylcholines, lysophosphatidylethanolamines, and cholesterol derivatives were found to be specific in aortic atherosclerotic plaques of old ApoE-/- mice. The lipid composition at related vessel positions of young ApoE-/- mice was more comparable with wild-type mice. Twenty-six m/z values of the murine lipid markers were found in human atherosclerotic peripheral arteries but also control vessels and showed a more patient-dependent diverse distribution. Extensive data analysis without marker preselection based on mouse data revealed lysophosphatidylcholine and glucosylated cholesterol species, the latter not being detected in the murine atherosclerotic tissue, as specific potential novel human atherosclerotic vessel markers. Despite the heterogeneous lipid profile of atherosclerotic peripheral arteries derived from human patients, we identified lipids specifically colocalized to atherosclerotic human tissue and plaques in ApoE-/- mice. These data highlight species-dependent differences in lipid profiles between peripheral artery disease and aortic atherosclerosis.


Asunto(s)
Lípidos/fisiología , Placa Aterosclerótica/metabolismo , Animales , Aorta/metabolismo , Enfermedades de la Aorta/metabolismo , Apolipoproteínas E/metabolismo , Aterosclerosis/metabolismo , Colesterol/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
6.
FASEB J ; 35(9): e21831, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34383982

RESUMEN

The nuclear factor of activated T-cells 5 (NFAT5) is a transcriptional regulator of macrophage activation and T-cell development, which controls stabilizing responses of cells to hypertonic and biomechanical stress. In this study, we detected NFAT5 in the media layer of arteries adjacent to human arteriosclerotic plaques and analyzed its role in vascular smooth muscle cells (VSMCs) known to contribute to arteriosclerosis through the uptake of lipids and transformation into foam cells. Exposure of both human and mouse VSMCs to cholesterol stimulated the nuclear translocation of NFAT5 and increased the expression of the ATP-binding cassette transporter Abca1, required to regulate cholesterol efflux from cells. Loss of Nfat5 promoted cholesterol accumulation in these cells and inhibited the expression of genes involved in the management of oxidative stress or lipid handling, such as Sod1, Plin2, Fabp3, and Ppard. The functional relevance of these observations was subsequently investigated in mice fed a high-fat diet upon induction of a smooth muscle cell-specific genetic ablation of Nfat5 (Nfat5(SMC)-/- ). Under these conditions, Nfat5(SMC)-/- but not Nfat5fl/fl mice developed small, focal lipid-rich lesions in the aorta after 14 and 25 weeks, which were formed by intracellular lipid droplets deposited in the sub-intimal VSMCs layer. While known for being activated by external stimuli, NFAT5 was found to mediate the expression of VSMC genes associated with the handling of lipids in response to a cholesterol-rich environment. Failure of this protective function may promote the formation of lipid-laden arterial VSMCs and pro-atherogenic vascular responses.


Asunto(s)
Aorta/metabolismo , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Factores de Transcripción/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Anciano , Animales , Aterosclerosis/metabolismo , Células Cultivadas , Colesterol/metabolismo , Femenino , Células Espumosas/metabolismo , Regulación de la Expresión Génica/fisiología , Humanos , Hipercolesterolemia/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Estrés Oxidativo/fisiología , Túnica Íntima/metabolismo
7.
Environ Sci Technol ; 56(3): 1820-1829, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35015514

RESUMEN

The epithelial cell layer that lines the gills of fish controls paracellular permeation of chemicals through tight junctions. The integrity of tight junctions can be affected by inflammation, which likely affects the bioavailability of chemicals. Here, the inflammation of the rainbow trout gill cell line RTgill-W1 was induced via exposure to bacterial lipopolysaccharides (LPS). Cells were then coexposed to extracts of oil sands process-affected water (OSPW), which contain complex mixtures of chemicals. After 24 h of exposure, cells exposed to LPS showed a reduction in transepithelial electrical resistance, an indicator of tight junction integrity. Quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis determined that abundances of transcripts of genes coding for tight junction proteins were significantly less in cells exposed to 20, 50, or 100 mg L-1 LPS. Chemical analysis revealed increased permeation of constituents of OSPW across epithelia at all studied LPS concentrations. These in vitro findings were confirmed in vivo in rainbow trout exposed to LPS and OSPW for 48 h, which resulted in greater accumulation of chemicals relative to that for fish exposed to OSPW alone. Our results demonstrated that inflammation and disruption of tight junctions could lead to greater uptake of potentially harmful chemicals from the environment, which has implications for mixture risk assessment.


Asunto(s)
Branquias , Oncorhynchus mykiss , Animales , Branquias/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Yacimiento de Petróleo y Gas , Oncorhynchus mykiss/metabolismo , Compuestos Orgánicos/metabolismo , Uniones Estrechas/metabolismo
8.
Exp Cell Res ; 399(2): 112446, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33422461

RESUMEN

Communication of vascular cells is essential for the control of organotypic functions of blood vessels. In this context, vascular endothelial cells (EC) act as potent regulators of vascular smooth muscle cell (VSMC) functions such as contraction and relaxation. However, the impact of ECs on the gene expression pattern of VSMCs is largely unknown. Here, we investigated changes of the VSMC transcriptome by utilizing 3D human vascular organoids organized as a core of VSMCs enclosed by a monolayer of ECs. Microarray-based analyses indicated that interaction with ECs for 48 h down-regulates expression of genes in VSMCs controlling rate-limiting steps of the cholesterol biosynthesis such as HMGCR, HMGCS1, DHCR24 and DHCR7. Protein analyses revealed a decrease in the abundance of DHCR24 (24-dehydrocholesterol reductase) and lower cholesterol levels in VSMCs co-cultured with ECs. On the functional level, the blockade of the DHCR24 activity impaired adhesion, migration and proliferation of VSMCs. Collectively, these findings indicate that ECs have the capacity to instruct VSMCs to shut down the expression of DHCR24 thereby limiting their cholesterol biosynthesis, which may support their functional steady state.


Asunto(s)
Colesterol/metabolismo , Células Endoteliales/fisiología , Músculo Liso Vascular/metabolismo , Proteínas del Tejido Nervioso/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Células Cultivadas , Regulación Enzimológica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Metabolismo de los Lípidos/genética , Miocitos del Músculo Liso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo
9.
Environ Res ; 212(Pt A): 113151, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35318011

RESUMEN

Selenium (Se) is an environmental contaminant of global concern that can cause adverse effects in fish at elevated levels. Fish gut microbiome play essential roles in gastrointestinal function and host health and can be perturbed by environmental contaminants, including metals and metalloids. Here, an in-situ Se exposure of female finescale dace (Phoxinus neogaeus) using mesocosms was conducted to determine the impacts of Se accumulation on the gut microbiome and morphometric endpoints. Prior to this study, the gut microbiome of finescale dace, a widespread Cyprinid throughout North America, had not been characterized. Exposure to Se caused a hormetic response of alpha diversity of the gut microbiome, with greater diversity at the lesser concentration of 1.6 µg Se/L, relative to that of fish exposed to the greater concentration of 5.6 µg Se/L. Select gut microbiome taxa of fish were differentially abundant between aqueous exposure concentrations and significantly correlated with liver-somatic index (LSI). The potential effects of gut microbiome dysbiosis on condition of wild fish might be a consideration when assessing adverse effects of Se in aquatic environments. More research regarding effects of Se on field-collected fish gut microbiome and the potential adverse effects or benefits on the host is warranted.


Asunto(s)
Cyprinidae , Microbioma Gastrointestinal , Selenio , Animales , Cyprinidae/fisiología , Femenino , Metales , América del Norte , Selenio/análisis , Selenio/toxicidad
10.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077591

RESUMEN

Gap junctions and their expression pattern are essential to robust function of intercellular communication and electrical propagation in cardiomyocytes. In healthy myocytes, the main cardiac gap junction protein connexin-43 (Cx43) is located at the intercalated disc providing a clear direction of signal spreading across the cardiac tissue. Dislocation of Cx43 to lateral membranes has been detected in numerous cardiac diseases leading to slowed conduction and high propensity for the development of arrhythmias. At the cellular level, arrhythmogenic diseases are associated with elevated levels of oxidative distress and gap junction remodeling affecting especially the amount and sarcolemmal distribution of Cx43 expression. So far, a mechanistic link between sustained oxidative distress and altered Cx43 expression has not yet been identified. Here, we propose a novel cell model based on murine induced-pluripotent stem cell-derived cardiomyocytes to investigate subcellular signaling pathways linking cardiomyocyte distress with gap junction remodeling. We tested the new hypothesis that chronic distress, induced by rapid pacing, leads to increased reactive oxygen species, which promotes expression of a micro-RNA, miR-1, specific for the control of Cx43. Our data demonstrate that Cx43 expression is highly sensitive to oxidative distress, leading to reduced expression. This effect can be efficiently prevented by the glutathione peroxidase mimetic ebselen. Moreover, Cx43 expression is tightly regulated by miR-1, which is activated by tachypacing-induced oxidative distress. In light of the high arrhythmogenic potential of altered Cx43 expression, we propose miR-1 as a novel target for pharmacological interventions to prevent the maladaptive remodeling processes during chronic distress in the heart.


Asunto(s)
Conexina 43 , MicroARNs , Animales , Arritmias Cardíacas/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Ratones , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo
11.
Basic Res Cardiol ; 116(1): 38, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34089101

RESUMEN

Previous studies have underlined the substantial role of nuclear factor of activated T cells (NFAT) in hypertension-induced myocardial hypertrophy ultimately leading to heart failure. Here, we aimed at neutralizing four members of the NFAT family of transcription factors as a therapeutic strategy for myocardial hypertrophy transiting to heart failure through AAV-mediated cardiac expression of a RNA-based decoy oligonucleotide (dON) targeting NFATc1-c4. AAV-mediated dON expression markedly decreased endothelin-1 induced cardiomyocyte hypertrophy in vitro and resulted in efficient expression of these dONs in the heart of adult mice as evidenced by fluorescent in situ hybridization. Cardiomyocyte-specific dON expression both before and after induction of transverse aortic constriction protected mice from development of cardiac hypertrophy, cardiac remodeling, and heart failure. Singular systemic administration of AAVs enabling a cell-specific expression of dONs for selective neutralization of a given transcription factor may thus represent a novel and powerful therapeutic approach.


Asunto(s)
Dependovirus/genética , Terapia Genética , Insuficiencia Cardíaca/prevención & control , Hipertrofia Ventricular Izquierda/prevención & control , Miocitos Cardíacos/metabolismo , Factores de Transcripción NFATC/genética , Oligonucleótidos/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Endotelina-1/toxicidad , Vectores Genéticos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/metabolismo , Oligonucleótidos/metabolismo , Ratas Wistar , Función Ventricular Izquierda , Remodelación Ventricular
12.
Circ Res ; 125(3): 282-294, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31213138

RESUMEN

RATIONALE: Fluid shear stress (FSS) maintains NOS-3 (endothelial NO synthase) expression. Homozygosity for the C variant of the T-786C single-nucleotide polymorphism of the NOS3 gene, which solely exists in humans, renders the gene less sensitive to FSS, resulting in a reduced endothelial cell (EC) capacity to generate NO. Decreased bioavailability of NO in the arterial vessel wall facilitates atherosclerosis. Consequently, individuals homozygous for the C variant have an increased risk for coronary heart disease (CHD). OBJECTIVE: At least 2 compensatory mechanisms seem to minimize the deleterious effects of this single-nucleotide polymorphism in affected individuals, one of which is characterized herein. METHODS AND RESULTS: Human genotyped umbilical vein ECs and THP-1 monocytes were used to investigate the role of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) in vitro. Its concentration in plasma samples from genotyped patients with CHD and age-matched CHD-free controls was determined using quantitative ultraperformance LC-MS/MS. Exposure of human ECs to FSS effectively reduced monocyte transmigration particularly through monolayers of CC-genotype ECs. Primarily in CC-genotype ECs, FSS elicited a marked rise in COX (cyclooxygenase)-2 and L-PGDS (lipocalin-type prostaglandin D synthase) expression, which appeared to be NO sensitive, and provoked a significant release of 15d-PGJ2 over baseline. Exogenous 15d-PGJ2 significantly reduced monocyte transmigration and exerted a pronounced anti-inflammatory effect on the transmigrated monocytes by downregulating, for example, transcription of the IL (interleukin)-1ß gene (IL1B). Reporter gene analyses verified that this effect is due to binding of Nrf2 (nuclear factor [erythroid-derived 2]-like 2) to 2 AREs (antioxidant response elements) in the proximal IL1B promoter. In patients with CHD, 15d-PGJ2 plasma levels were significantly upregulated compared with age-matched CHD-free controls, suggesting that this powerful anti-inflammatory prostanoid is part of an endogenous defence mechanism to counteract CHD. CONCLUSIONS: Despite a reduced capacity to form NO, CC-genotype ECs maintain a robust anti-inflammatory phenotype through an enhanced FSS-dependent release of 15d-PGJ2.


Asunto(s)
Células Endoteliales/metabolismo , Óxido Nítrico Sintasa de Tipo III/deficiencia , Óxido Nítrico/sangre , Polimorfismo de Nucleótido Simple , Prostaglandina D2/análogos & derivados , Adaptación Fisiológica , Anciano , Anciano de 80 o más Años , Enfermedad Coronaria/sangre , Enfermedad Coronaria/genética , Ciclooxigenasa 2/biosíntesis , Ciclooxigenasa 2/genética , Inducción Enzimática , Femenino , Genes Reporteros , Predisposición Genética a la Enfermedad , Hemorreología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación , Oxidorreductasas Intramoleculares/biosíntesis , Oxidorreductasas Intramoleculares/genética , Lipocalinas/biosíntesis , Lipocalinas/genética , Masculino , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/fisiología , Óxido Nítrico Sintasa de Tipo III/genética , Prostaglandina D2/biosíntesis , Prostaglandina D2/sangre , Prostaglandina D2/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Células THP-1
13.
Environ Sci Technol ; 55(13): 9109-9118, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34165962

RESUMEN

Standardized laboratory tests with a limited number of model species are a key component of chemical risk assessments. These surrogate species cannot represent the entire diversity of native species, but there are practical and ethical objections against testing chemicals in a large variety of species. In previous research, we have developed a multispecies toxicokinetic model to extrapolate chemical bioconcentration across species by combining single-species physiologically based toxicokinetic (PBTK) models. This "top-down" approach was limited, however, by the availability of fully parameterized single-species models. Here, we present a "bottom-up" multispecies PBTK model based on available data from 69 freshwater fishes found in Canada. Monte Carlo-like simulations were performed using statistical distributions of model parameters derived from these data to predict steady-state bioconcentration factors (BCFs) for a set of well-studied chemicals. The distributions of predicted BCFs for 1,4-dichlorobenzene and dichlorodiphenyltrichloroethane largely overlapped those of empirical data, although a tendency existed toward overestimation of measured values. When expressed as means, predicted BCFs for 26 of 34 chemicals (82%) deviated by less than 10-fold from measured data, indicating an accuracy similar to that of previously published single-species models. This new model potentially enables more environmentally relevant predictions of bioconcentration in support of chemical risk assessments.


Asunto(s)
Peces , Modelos Biológicos , Animales , Canadá , Medición de Riesgo , Toxicocinética
14.
Environ Sci Technol ; 55(17): 11590-11600, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34383468

RESUMEN

The white sturgeon (Acipenser transmontanus) is an endangered ancient fish species that is known to be particularly sensitive to certain environmental contaminants, partly because of the uptake and subsequent toxicity of lipophilic pollutants prone to bioconcentration as a result of their high lipid content. To better understand the bioconcentration of organic contaminants in this species, toxicokinetic (TK) models were developed for the embryo-larval and subadult life stages. The embryo-larval model was designed as a one-compartment model and validated using whole-body measurements of benzo[a]pyrene (B[a]P) metabolites from a waterborne exposure to B[a]P. A physiologically based TK (PBTK) model was used for the subadult model. The predictive power of the subadult model was validated with an experimental data set of four chemicals. Results showed that the TK models could accurately predict the bioconcentration of organic contaminants for both life stages of white sturgeon within 1 order of magnitude of measured values. These models provide a tool to better understand the impact of environmental contaminants on the health and the survival of endangered white sturgeon populations.


Asunto(s)
Contaminantes Químicos del Agua , Animales , Bioacumulación , Peces , Larva , Toxicocinética
15.
Environ Sci Technol ; 55(15): 10608-10618, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34292719

RESUMEN

There is an urgent demand for more efficient and ethical approaches in ecological risk assessment. Using 17α-ethinylestradiol (EE2) as a model compound, this study established an embryo benchmark dose (BMD) assay for rainbow trout (RBT; Oncorhynchus mykiss) to derive transcriptomic points-of-departure (tPODs) as an alternative to live-animal tests. Embryos were exposed to graded concentrations of EE2 (measured: 0, 1.13, 1.57, 6.22, 16.3, 55.1, and 169 ng/L) from hatch to 4 and up to 60 days post-hatch (dph) to assess molecular and apical responses, respectively. Whole proteome analyses of alevins did not show clear estrogenic effects. In contrast, transcriptomics revealed responses that were in agreement with apical effects, including excessive accumulation of intravascular and hepatic proteinaceous fluid and significant increases in mortality at 55.1 and 169 ng/L EE2 at later time points. Transcriptomic BMD analysis estimated the median of the 20th lowest geneBMD to be 0.18 ng/L, the most sensitive tPOD. Other estimates (0.78, 3.64, and 1.63 ng/L for the 10th percentile geneBMD, first peak geneBMD distribution, and median geneBMD of the most sensitive over-represented pathway, respectively) were within the same order of magnitude as empirically derived apical PODs for EE2 in the literature. This 4-day alternative RBT embryonic assay was effective in deriving tPODs that are protective of chronic effects of EE2.


Asunto(s)
Oncorhynchus mykiss , Contaminantes Químicos del Agua , Animales , Benchmarking , Estrógenos , Etinilestradiol/toxicidad , Oncorhynchus mykiss/genética , Transcriptoma , Contaminantes Químicos del Agua/toxicidad
16.
Environ Sci Technol ; 55(8): 5024-5036, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33755441

RESUMEN

There is increasing pressure to develop alternative ecotoxicological risk assessment approaches that do not rely on expensive, time-consuming, and ethically questionable live animal testing. This study aimed to develop a comprehensive early life stage toxicity pathway model for the exposure of fish to estrogenic chemicals that is rooted in mechanistic toxicology. Embryo-larval fathead minnows (FHM; Pimephales promelas) were exposed to graded concentrations of 17α-ethinylestradiol (water control, 0.01% DMSO, 4, 20, and 100 ng/L) for 32 days. Fish were assessed for transcriptomic and proteomic responses at 4 days post-hatch (dph), and for histological and apical end points at 28 dph. Molecular analyses revealed core responses that were indicative of observed apical outcomes, including biological processes resulting in overproduction of vitellogenin and impairment of visual development. Histological observations indicated accumulation of proteinaceous fluid in liver and kidney tissues, energy depletion, and delayed or suppressed gonad development. Additionally, fish in the 100 ng/L treatment group were smaller than controls. Integration of omics data improved the interpretation of perturbations in early life stage FHM, providing evidence of conservation of toxicity pathways across levels of biological organization. Overall, the mechanism-based embryo-larval FHM model showed promise as a replacement for standard adult live animal tests.


Asunto(s)
Cyprinidae , Contaminantes Químicos del Agua , Animales , Etinilestradiol/toxicidad , Proteómica , Diferenciación Sexual , Vitelogeninas , Contaminantes Químicos del Agua/toxicidad
17.
Exp Cell Res ; 388(1): 111782, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31857114

RESUMEN

Three-dimensional (3D) cell culture conditions are often used to promote the differentiation of human cells as a prerequisite for the study of organotypic functions and environment-specific cellular responses. Here, we assessed the molecular and functional phenotype of vascular smooth muscle cells (VSMCs) cultured as 3D multilayered aggregates. Microarray studies revealed that these conditions decrease the expression of genes associated with cell cycle control and DNA replication and cease proliferation of VSMCs. This was accompanied by a lower activity level of the mitogen-activated protein kinase ERK1/2 and an increase in autocrine TGFß/SMAD2/3-mediated signaling - a determinant of VSMC differentiation. However, inhibition of TGFß signaling did not affect markers of VSMC differentiation such as smooth muscle myosin heavy chain (MYH11) but stimulated pro-inflammatory NFκB-associated gene expression in the first place while decreasing the protein level of NFKB1/p105 and NFKB2/p100 - inhibitors of NFκB transcriptional activity. Moreover, loss of TGFß signaling also revived VSMC proliferation in 3D aggregates. In conclusion, assembly of VSMCs in multilayered aggregates alters their transcriptome to translate the cellular organization into a resting phenotype. In this context, TGFß signaling appears to attenuate cell growth and NFκB-controlled gene expression representing important aspects of VSMC quiescence.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Agregación Celular , Proliferación Celular , Células Cultivadas , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/fisiología , Cadenas Pesadas de Miosina/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Transcriptoma , Factor de Crecimiento Transformador beta/metabolismo
18.
Proc Natl Acad Sci U S A ; 115(24): E5556-E5565, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29793936

RESUMEN

Monocyte extravasation into the vessel wall is a key step in atherogenesis. It is still elusive how monocytes transmigrate through the endothelial cell (EC) monolayer at atherosclerosis predilection sites. Platelets tethered to ultra-large von Willebrand factor (ULVWF) multimers deposited on the luminal EC surface following CD40 ligand (CD154) stimulation may facilitate monocyte diapedesis. Human ECs grown in a parallel plate flow chamber for live-cell imaging or Transwell permeable supports for transmigration assay were exposed to fluid or orbital shear stress and CD154. Human isolated platelets and/or monocytes were superfused over or added on top of the EC monolayer. Plasma levels and activity of the ULVWF multimer-cleaving protease ADAMTS13 were compared between coronary artery disease (CAD) patients and controls and were verified by the bioassay. Two-photon intravital microscopy was performed to monitor CD154-dependent leukocyte recruitment in the cremaster microcirculation of ADAMTS13-deficient versus wild-type mice. CD154-induced ULVWF multimer-platelet string formation on the EC surface trapped monocytes and facilitated transmigration through the EC monolayer despite high shear stress. Two-photon intravital microscopy revealed CD154-induced ULVWF multimer-platelet string formation preferentially in venules, due to strong EC expression of CD40, causing prominent downstream leukocyte extravasation. Plasma ADAMTS13 abundance and activity were significantly reduced in CAD patients and strongly facilitated both ULVWF multimer-platelet string formation and monocyte trapping in vitro. Moderate ADAMTS13 deficiency in CAD patients augments CD154-mediated deposition of platelet-decorated ULVWF multimers on the luminal EC surface, reinforcing the trapping of circulating monocytes at atherosclerosis predilection sites and promoting their diapedesis.


Asunto(s)
Proteína ADAMTS13/metabolismo , Plaquetas/metabolismo , Antígenos CD40/metabolismo , Comunicación Celular/fisiología , Células Endoteliales/metabolismo , Factor de von Willebrand/metabolismo , Adolescente , Adulto , Anciano , Animales , Aterosclerosis/metabolismo , Células Cultivadas , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Monocitos/metabolismo , Agregación Plaquetaria/fisiología , Estrés Mecánico , Adulto Joven
19.
Ecotoxicol Environ Saf ; 208: 111716, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396047

RESUMEN

Although withdrawn from the market in the 1980s, polychlorinated biphenyls (PCBs) are still found ubiquitously in the aquatic environment and pose a serious risk to biota due to their teratogenic potential. In fish, early life-stages are often considered most sensitive with regard to their exposure to PCBs and other dioxin-like compounds. However, little is known about the molecular drivers of the frequently observed teratogenic effects. Therefore, the aims of our study were to: (1) characterize the baseline transcriptome profiles at different embryonic life-stages in zebrafish (Danio rerio); and (2) to identify the molecular response to PCB exposure and life-stage specific-effects of the chemical on associated processes. For both objectives, embryos were sampled at 12, 48, and 96 h post-fertilization (hpf) and subjected to Illumina sequence-by-synthesis and RNAseq analysis. Results revealed that with increasing age more genes and related pathways were upregulated both in terms of number and magnitude. Yet, other transcripts followed an opposite pattern with greater transcript abundance at the earlier time points. Additionally, embryos were exposed to PCB126, a potent agonist of the aryl hydrocarbon receptor (AHR). ClueGO network analysis revealed significant enrichment of genes associated with basic cell metabolism, communication, and homeostasis as well as eye development, muscle formation, and skeletal formation. We selected eight genes involved in the affected pathways for an in-depth characterization of their regulation throughout normal embryogenesis and after exposure to PCB126 by quantification of transcript abundances every 12 h until 118 hpf. Among these, fgf7 and c9 stood out because of their strong upregulation by PCB126 exposure at 48 and 96 hpf, respectively. Cyp2aa12 was upregulated from 84 hpf on. Fabp10ab, myhz1.1, col8a1a, sulf1, and opn1sw1 displayed specific regulation depending on the developmental stage. Overall, we demonstrate that (1) the developmental transcriptome of zebrafish is highly dynamic, and (2) dysregulation of gene expression by exposure to PCB126 was significant and in several cases not directly connected to AHR-signaling. Hence, this study improves the understanding of linkages between molecular events and apical outcomes that are of regulatory relevance.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Bifenilos Policlorados/toxicidad , Teratógenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología , Animales , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Transcriptoma , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores
20.
FASEB J ; 33(3): 3364-3377, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30383452

RESUMEN

The arterial wall adapts to alterations in blood flow and pressure by remodeling the cellular and extracellular architecture. Biomechanical stress of vascular smooth muscle cells (VSMCs) in the media is thought to precede this process and promote their activation and subsequent proliferation. However, molecular determinants orchestrating the transcriptional phenotype under these conditions have been insufficiently studied. We identified the transcription factor, nuclear factor of activated T cells 5 (NFAT5; or tonicity enhancer-binding protein) as a crucial regulatory element of mechanical stress responses of VSMCs. Here, the relevance of NFAT5 for arterial growth and thickening is investigated in mice upon inducible smooth muscle cell (SMC)-specific genetic ablation of Nfat5. In cultured mouse VSMCs, loss of Nfat5 inhibits the expression of gene sets involved in the control of the cell cycle and the interaction with the extracellular matrix and cytoskeletal dynamics. In vivo, SMC-specific knockout of Nfat5 did not affect the general vascular architecture and blood pressure levels under baseline conditions. However, proliferation of VSMCs and the thickening of the arterial wall were inhibited during both flow-induced collateral remodeling and hypertension-mediated arterial hypertrophy. Whereas originally described as a hypertonicity-responsive transcription factor, these findings identify NFAT5 as a novel molecular determinant of biomechanically induced phenotype changes of VSMCs and wall stress-induced arterial remodeling processes.-Arnold, C., Feldner, A., Zappe, M., Komljenovic, D., De La Torre, C., Ruzicka, P., Hecker, M., Neuhofer, W., Korff, T. Genetic ablation of NFAT5/TonEBP in smooth muscle cells impairs flow- and pressure-induced arterial remodeling in mice.


Asunto(s)
Presión Sanguínea/genética , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/fisiología , Factores de Transcripción/genética , Remodelación Vascular/genética , Animales , Ciclo Celular/genética , Proliferación Celular/genética , Células Cultivadas , Matriz Extracelular/genética , Hipertensión/genética , Ratones , Flujo Sanguíneo Regional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA