Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 19(12)2019 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-31208106

RESUMEN

This study presents a novel multi-scale view-planning algorithm for automated targeted inspection using unmanned aircraft systems (UAS). In industrial inspection, it is important to collect the most relevant data to keep processing demands, both human and computational, to a minimum. This study investigates the viability of automated targeted multi-scale image acquisition for Structure from Motion (SfM)-based infrastructure modeling. A traditional view-planning approach for SfM is extended to a multi-scale approach, planning for targeted regions of high, medium, and low priority. The unmanned aerial vehicle (UAV) can traverse the entire aerial space and facilitates collection of an optimized set of views, both close to and far away from areas of interest. The test case for field validation is the Tibble Fork Dam in Utah. Using the targeted multi-scale flight planning, a UAV automatically flies a tiered inspection using less than 25% of the number of photos needed to model the entire dam at high-priority level. This results in approximately 75% reduced flight time and model processing load, while still maintaining high model accuracy where needed. Models display stepped improvement in visual clarity and SfM reconstruction integrity by priority level, with the higher priority regions more accurately modeling smaller and finer features. A resolution map of the final tiered model is included. While this study focuses on multi-scale view planning for optical sensors, the methods potentially extend to other remote sensors, such as aerial LiDAR.

2.
J Chem Theory Comput ; 19(13): 4163-4171, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37293975

RESUMEN

Thermophysical properties of organic compounds are used in countless scientific, engineering, and industrial settings in developing theories, designing new systems and devices, analyzing costs and risks, and improving existing infrastructure. Often, due to costs, safety, prior interest, or procedural difficulties, experimental values for desired properties are not available and must be predicted. The literature is filled with prediction techniques, but even the best traditional methods have significant errors compared to what is possible considering experimental uncertainty. Recently, machine learning and artificial intelligence techniques have been applied to the property prediction problem, but the examples to date do not extrapolate well outside the data set used for training the model. This work demonstrates a solution to this problem by combining chemistry and physics when training the model and builds upon prior traditional and machine learning methods. Two case studies are presented. The first is for parachor which is used for surface tension prediction. Surface tensions are needed to design distillation columns, adsorption processes, gas-liquid reactors, liquid-liquid extractors, improve oil reservoir recovery, and undertake environmental impact studies or remediation actions. A set of 277 compounds is divided into training, validation, and test sets, and a multilayered physics-informed neural network (PINN) is developed. The results demonstrate that better extrapolation by deep learning models can be developed by adding in physics-based constraints. Second, a set of 1600 compounds is utilized for training, validating, and testing a PINN to improve normal boiling point predictions based on group contribution methods and physics-based constraints. The results show that the PINN performs better than any other method with a normal boiling point mean absolute error of 6.95 °C on training and 11.2 °C on test data. Key observations are that (1) a balanced split by compound type is important to have representative compound families in each of the train, validation, and test sets and (2) constraining group contributions being positive improves predictions on the test set. While this work demonstrates improvements for only surface tension and normal boiling point, the results offer significant hope that PINNs can improve prediction of other relevant thermophysical properties over existing approaches.

3.
ISA Trans ; 105: 256-268, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32487423

RESUMEN

When drilling an oil or gas well, well pressures may be controlled using a technology called managed pressure drilling. This technology often relies on model predictive control schemes; however, practical limitations have generally led to the use of simplified controller models that do not optimally handle certain perturbations in the physical system. The present work reports on the first implementation of a highly accurate system model that has been adapted for real-time use in a controller. This real-time high-fidelity model approximates the results of offline high-fidelity models without requiring operation by model experts. The effectiveness of the model is demonstrated through simulation studies of controller behavior under various drilling conditions, including an evaluation of the impact of sparse downhole feedback measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA