Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Langmuir ; 39(1): 192-203, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36537794

RESUMEN

Despite the growing use of organic or mixed solvents in zeolite processing, most studies focus only on aqueous suspension systems. We investigated the colloidal characteristics of submicron-sized zeolite NaA in mixed ethanol-water solvents. The effects of the mixing ratio of solvents and various additives on the dispersion of the zeolite powders were studied. The zeolite NaA particles were destabilized in solvent mixtures at a high ethanol-to-water ratio, a reduction in the zeta potential was observed, and the destabilization was rationalized by the Derjaguin, Landau, Verwey, Overbeek (DLVO) theory. An improved stabilization of the zeolite NaA suspensions was achieved in ethanol-rich solvent mixtures using nonionic low molecular weight organic additives, but not with their ionic counterparts such as anionic, cationic surfactants or inorganic acids or bases. Polyethylene glycol (PEG)-400 was found to be a good dispersant for the submicron-sized zeolite NaA particles in the ethanol-water mixtures, which was attributed to its interaction with the zeolite surface, leading to an increased zeta potential. The PEG-stabilized zeolite suspensions led to low suspension viscosities as well as uniform and consistent spin-coated films.

2.
Phys Chem Chem Phys ; 24(25): 15230-15244, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35703010

RESUMEN

Electronic structure calculations are fundamentally important for the interpretation of nuclear magnetic resonance (NMR) spectra from paramagnetic systems that include organometallic and inorganic compounds, catalysts, or metal-binding sites in proteins. Prediction of induced paramagnetic NMR shifts requires knowledge of electron paramagnetic resonance (EPR) parameters: the electronic g tensor, zero-field splitting D tensor, and hyperfine A tensor. The isotropic part of A, called the hyperfine coupling constant (HFCC), is one of the most troublesome properties for quantum chemistry calculations. Yet, even relatively small errors in calculations of HFCC tend to propagate into large errors in the predicted NMR shifts. The poor quality of A tensors that are currently calculated using density functional theory (DFT) constitutes a bottleneck in improving the reliability of interpretation of the NMR spectra from paramagnetic systems. In this work, electron correlation effects in calculations of HFCCs with a hierarchy of ab initio methods were assessed, and the applicability of different levels of DFT approximations and the coupled cluster singles and doubles (CCSD) method was tested. These assessments were performed for the set of selected test systems comprising an organic radical, and complexes with transition metal and rare-earth ions, for which experimental data are available. Severe deficiencies of DFT were revealed but the CCSD method was able to deliver good agreement with experimental data for all systems considered, however, at substantial computational costs. We proposed a more computationally tractable alternative, where the A was computed with the coupled cluster theory exploiting locality of electron correlation. This alternative is based on the domain-based local pair natural orbital coupled cluster singles and doubles (DLPNO-CCSD) method. In this way the robustness and reliability of the coupled cluster theory were incorporated into the modern formalism for the prediction of induced paramagnetic NMR shifts, and became applicable to systems of chemical interest. This approach was verified for the bis(cyclopentadienyl)vanadium(II) complex (Cp2V; vanadocene), and the metal-binding site of the Zn2+ → Co2+ substituted superoxide dismutase (SOD) metalloprotein. Excellent agreement with experimental NMR shifts was achieved, which represented a substantial improvement over previous theoretical attempts. The effects of vibrational corrections to orbital shielding and hyperfine tensor were evaluated and discussed within the second-order vibrational perturbation theory (VPT2) framework.


Asunto(s)
Electrones , Magnetismo , Espectroscopía de Resonancia por Spin del Electrón , Espectroscopía de Resonancia Magnética , Reproducibilidad de los Resultados
3.
Phys Chem Chem Phys ; 23(38): 21554-21567, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34550137

RESUMEN

Methane has been successfully encapsulated within cages of C60 fullerene, which is an appropriate model system to study confinement effects. Its chemistry and physics are also relevant for theoretical model descriptions. Here we provide insights into intermolecular interactions and predicted spectroscopic responses of the CH4@C60 complex and compared them with results from other methods and with data from the literature. Local energy decomposition analysis (LED) within the domain-based local pair natural orbital coupled cluster singles, doubles, and perturbative triples (DLPNO-CCSD(T)) framework was used, and an efficient protocol for studies of endohedral complexes of fullerenes is proposed. This approach allowed us to assess energies in relation to electronic and geometric preparation, electrostatics, exchange, and London dispersion for the CH4@C60 endohedral complex. The calculated stabilization energy of CH4 inside the C60 fullerene was -13.5 kcal mol-1 and its magnitude was significantly larger than the latent heat of evaporation of CH4. Evaluation of vibrational frequencies and polarizabilities of the CH4@C60 complex revealed that the infrared (IR) and Raman bands of the endohedral CH4 were essentially "silent" due to the dielectric screening effect of C60, which acted as a molecular Faraday cage. Absorption spectra in the UV-vis domain and ionization potentials of C60 and CH4@C60 were predicted. They were almost identical. The calculated 1H/13C NMR shifts and spin-spin coupling constants were in very good agreement with experimental data. In addition, reference DLPNO-CCSD(T) interaction energies for complexes with noble gases (Ng@C60; Ng = He, Ne, Ar, Kr) were calculated. The values were compared with those derived from supramolecular MP2/SCS-MP2 calculations and estimates with London-type formulas by Pyykkö and coworkers [Phys. Chem. Chem. Phys., 2010, 12, 6187-6203], and with values derived from DFT-based symmetry-adapted perturbation theory (DFT-SAPT) by Hesselmann & Korona [Phys. Chem. Chem. Phys., 2011, 13, 732-743]. Selected points at the potential energy surface of the endohedral He2@C60 trimer were considered. In contrast to previous theoretical attempts with the DFT/MP2/SCS-MP2/DFT-SAPT methods, our calculations at the DLPNO-CCSD(T) level of theory predicted the He2@C60 trimer to be thermodynamically stable, which is in agreement with experimental observations.

4.
J Am Chem Soc ; 142(36): 15386-15395, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32786758

RESUMEN

The oxygen reduction reaction (ORR) is central in carbon-neutral energy devices. While platinum group materials have shown high activities for ORR, their practical uses are hampered by concerns over deactivation, slow kinetics, exorbitant cost, and scarce nature reserve. The low cost yet high tunability of metal-organic frameworks (MOFs) provide a unique platform for tailoring their characteristic properties as new electrocatalysts. Herein, we report a new concept of design and present stable Zr-chain-based MOFs as efficient electrocatalysts for ORR. The strategy is based on using Zr-chains to promote high chemical and redox stability and, more importantly, tailor the immobilization and packing of redox active-sites at a density that is ideal to improve the reaction kinetics. The obtained new electrocatalyst, PCN-226, thereby shows high ORR activity. We further demonstrate PCN-226 as a promising electrode material for practical applications in rechargeable Zn-air batteries, with a high peak power density of 133 mW cm-2. Being one of the very few electrocatalytic MOFs for ORR, this work provides a new concept by designing chain-based structures to enrich the diversity of efficient electrocatalysts and MOFs.

5.
Langmuir ; 35(40): 12971-12978, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31510744

RESUMEN

Carbon dioxide must be removed from biogas or natural gas to obtain compressed or liquefied methane, and adsorption-driven isolation of CO2 could be improved by developing new adsorbents. Zeolite adsorbents can select CO2 over CH4, and the adsorption of CH4 on zeolite |Na12-xKx|-A is significantly lower for samples with a high K+ content, i.e., x > 2. Nevertheless, we show, using 1H NMR experiments, that these zeolites adsorb CH4 after long equilibration times. Pulsed-field gradient NMR experiments indicated that in large crystals of zeolites |Na12-xKx|-A, the long-time diffusion coefficients of CH4 did not vary with x, and the upper limit of the mean-square displacement was about 1.5 µm, irrespective of the diffusion time. Also for zeolite |Na12|-A samples of three different particle sizes (∼0.44, ∼2.9, and ∼10.6 µm), the upper limit of the mean-square displacement of CH4 was 1.5 µm and largely independent of the diffusion time. This similarity provided further evidence for an intracrystalline diffusion restriction for CH4 within the medium- and large-sized zeolite A crystals and possibly of clustering and close contact among the small zeolite A crystals. The upper limit of the long-time diffusion coefficient of adsorbed CH4 was (at 1 atm and 298 K) about 10-10 m2/s irrespective of the size of the zeolite particle or the studied content of K+ in zeolites |Na12-xKx|-A and |Na12|-A. The T1 relaxation time for adsorbed CH4 on zeolites |Na12-xKx|-A with x > 2 was smaller than for those with x < 2, indicating that the short-time diffusion of CH4 was hindered.

6.
Langmuir ; 34(26): 7708-7713, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29847140

RESUMEN

Carbonyl sulfide (COS) reacts slowly with amines in the aqueous solutions used to absorb CO2 from natural gas and flue gas and can also deactivate certain aqueous amines. The effects of COS on amines tethered to porous silica, however, have not been investigated before. Hence, the adsorption of COS on aminopropyl groups tethered to porous silica was studied using in situ IR spectroscopy. COS chemisorbed mainly and reversibly as propylammonium propylthiocarbamate ion pairs [R-NH(C═O)S-+H3N-R] under dry conditions. In addition, a small amount of another chemisorbed species formed slowly and irreversibly. Nevertheless, the CO2 capacities of the adsorbents were fully retained after COS was desorbed.

7.
Langmuir ; 34(6): 2274-2281, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29400064

RESUMEN

A colloidal dispersion of uniform organosilica nanoparticles could be produced via the disassembly of the non-surfactant-templated organosilica powder nanostructured folate material (NFM-1). This unusual reaction pathway was available because the folate and silica-containing moieties in NFM-1 are held together by noncovalent interactions. No precipitation was observed from the colloidal dispersion after a week, though particle growth occurred at a solvent-dependent rate that could be described by the Lifshitz-Slyozov-Wagner equation. An organosilica film that was prepared from the colloidal dispersion adsorbed folate-binding protein from solution but adsorbed ions from a phosphate-buffered saline solution to a larger degree. To our knowledge, this is the first instance of a colloidal dispersion of organosilica nanoparticles being derived from a macroscopic material rather than from molecular precursors.

8.
Phys Chem Chem Phys ; 18(24): 16080-3, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27251457

RESUMEN

The|Na10.2KCs0.8|8[Al12Si12O48]8(Fm3[combining macron]c)-LTA zeolite adsorbs CO2-over-CH4 with a high selectivity (over 1500). The uptake of carbon dioxide is also high (3.31 mmol g(-1), 293 K, 101 kPa). This form of zeolite A is a very promising adsorbent for applications such as biogas upgrading, where keeping the adsorption of methane to a minimum is crucial.

9.
Angew Chem Int Ed Engl ; 55(28): 8117-20, 2016 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27254155

RESUMEN

Temperature and pH value can affect the short-range order of proto-structured and additive-free amorphous calcium carbonates (ACCs). Whereas a distinct change occurs in proto-vaterite (pv) ACC above 45 °C at pH 9.80, proto-calcite (pc) ACC (pH 8.75) is unaffected within the investigated range of temperatures (7-65 °C). IR and NMR spectroscopic studies together with EXAFS analysis showed that the temperature-induced change is related to the formation of proto-aragonite (pa) ACC. The data strongly suggest that the binding of water molecules induces dipole moments across the carbonate ions in pa-ACC as in aragonite, where the dipole moments are due to the symmetry of the crystal structure. Altogether, a (pseudo-)phase diagram of the CaCO3 polyamorphism in which water plays a key role can be formulated based on variables of state, such as the temperature, and solution parameters, such as the pH value.

10.
Anal Chem ; 87(20): 10161-5, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26413906

RESUMEN

In the context of carbon capture and storage (CCS), micro- and mesoporous polymers have received significant attention due to their ability to selectively adsorb and separate CO2 from gas streams. The performance of such materials is critically dependent on the isosteric heat of adsorption (Qst) of CO2 directly related to the interaction strength between CO2 and the adsorbent. Here, we show using the microporous polymer PIM-1 as a model system that its Qst can be conveniently determined by in situ UV-vis optical transmission spectroscopy directly applied on the adsorbent or, with higher resolution, by indirect nanoplasmonic sensing based on localized surface plasmon resonance in metal nanoparticles. Taken all together, this study provides a general blueprint for efficient optical screening of micro- and mesoporous polymeric materials for CCS in terms of their CO2 adsorption energetics and kinetics.


Asunto(s)
Dióxido de Carbono/química , Nanotecnología , Polímeros/química , Resonancia por Plasmón de Superficie , Rayos Ultravioleta , Adsorción , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
11.
Langmuir ; 30(32): 9682-90, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25072512

RESUMEN

Adsorbents with high capacity and selectivity for adsorption of CO2 are currently being investigated for applications in adsorption-driven separation of CO2 from flue gas. An adsorbent with a particularly high CO2-over-N2 selectivity and high capacity was tested here. Zeolite ZK-4 (Si:Al ∼ 1.3:1), which had the same structure as zeolite A (LTA), showed a high CO2 capacity of 4.85 mmol/g (273 K, 101 kPa) in its Na(+) form. When approximately 26 at. % of the extraframework cations were exchanged for K(+) (NaK-ZK-4), the material still adsorbed a large amount of CO2 (4.35 mmol/g, 273 K, 101 kPa), but the N2 uptake became negligible (<0.03 mmol/g, 273 K, 101 kPa). The majority of the CO2 was physisorbed on zeolite ZK-4 as quantified by consecutive volumetric adsorption measurements. The rate of physisorption of CO2 was fast, even for the highly selective sample. The molecular details of the sorption of CO2 were revealed as well. Computer modeling (Monte Carlo, molecular dynamics simulations, and quantum chemical calculations) allowed us to partly predict the behavior of fully K(+) exchanged zeolite K-ZK-4 upon adsorption of CO2 and N2 for Si:Al ratios up to 4:1. Zeolite K-ZK-4 with Si:Al ratios below 2.5:1 restricted the diffusion of CO2 and N2 across the cages. These simulations could not probe the delicate details of the molecular sieving of CO2 over N2. Still, this study indicates that zeolites NaK-ZK-4 and K-ZK-4 could be appealing adsorbents with high CO2 uptake (∼4 mmol/g, 101 kPa, 273 K) and a kinetically enhanced CO2-over-N2 selectivity.

12.
Materials (Basel) ; 17(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38730787

RESUMEN

Sustainable composite materials, including carnauba wax, can store energy in the form of latent heat, and containing the wax may allow form-stable melting and crystallization cycles to be performed. Here, it is shown that carnauba wax in the molten state and the abundant nanoclay montmorillonite form stable composites with mass ratios of 50-70% (w/w). Transmission electron microscopy analysis reveals the inhomogeneous distribution of the nanoclay in the wax matrix. Analyses with infrared and multinuclear solid-state nuclear magnetic resonance (NMR) spectroscopy prove the chemical inertness of the composite materials during preparation. No new phases are formed according to studies with powder X-ray diffraction. The addition of the nanoclay increases the thermal conductivity and prevents the leakage of the phase change material, as well as reducing the time intervals of the cycle of accumulation and the return of heat. The latent heat increases in the row 69.5 ± 3.7 J/g, 95.0 ± 2.5 J/g, and 107.9 ± 1.7 J/g for the composite materials containing resp. 50%, 60% and 70% carnauba wax. Analysis of temperature-dependent 13C cross-polarization solid-state NMR spectra reveal the enhanced amorphization and altered molecular dynamics of the carnauba wax constituents in the composite materials. The amorphization also defines changes in the thermal transport mechanism in the composites compared to pure wax at elevated temperatures.

13.
Sci Rep ; 14(1): 14923, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942951

RESUMEN

Microporous organic polymers that have three-dimensional connectivity stemming from monomers with tetrahedral or tetrahedron-like geometry can have high surface areas and strong fluorescence. There are however few examples of such polymers based on hindered biaryls, and their fluorescence has not been studied. Hypothesizing that the contortion in a hindered biphenyl moiety would modulate the optical properties of a polymer built from it, we synthesized a meta-enchained polyphenylene from a 2,2',6,6'-tetramethylbiphenyl-based monomer, in which the two phenyl rings are nearly mutually perpendicular. The polymer was microporous with SBET = 495 m2 g-1. The polymer absorbed near-UV light and emitted blue fluorescence despite the meta-enchainment that would have been expected to break the conjugation. A related copolymer, synthesized from 2,2',6,6'-tetramethylbiphenyl-based and unsubstituted biphenyl-based monomers, was microporous but not fluorescent.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38595048

RESUMEN

Tuning the charge transfer processes through a built-in electric field is an effective way to accelerate the dynamics of electro- and photocatalytic reactions. However, the coupling of the built-in electric field of p-n heterojunctions and the microstrain-induced polarization on the impact of piezocatalysis has not been fully explored. Herein, we demonstrate the role of the built-in electric field of p-type BiOI/n-type BiVO4 heterojunctions in enhancing their piezocatalytic behaviors. The highly crystalline p-n heterojunction is synthesized by using a coprecipitation method under ambient aqueous conditions. Under ultrasonic irradiation in water exposed to air, the p-n heterojunctions exhibit significantly higher production rates of reactive species (·OH, ·O2-, and 1O2) as compared to isolated BiVO4 and BiOI. Also, the piezocatalytic rate of H2O2 production with the BiOI/BiVO4 heterojunction reaches 480 µmol g-1 h-1, which is 1.6- and 12-fold higher than those of BiVO4 and BiOI, respectively. Furthermore, the p-n heterojunction maintains a highly stable H2O2 production rate under ultrasonic irradiation for up to 5 h. The results from the experiments and equation-driven simulations of the strain and piezoelectric potential distributions indicate that the piezocatalytic reactivity of the p-n heterojunction resulted from the polarization intensity induced by periodic ultrasound, which is enhanced by the built-in electric field of the p-n heterojunctions. This study provides new insights into the design of piezocatalysts and opens up new prospects for applications in medicine, environmental remediation, and sonochemical sensors.

15.
Adv Sci (Weinh) ; : e2404426, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976554

RESUMEN

Waste plastics bring about increasingly serious environmental challenges, which can be partly addressed by their interconversion into valuable compounds. It is hypothesized that the porosity and acidity of a zeolite-based catalyst will affect the selectivity and effectiveness, enabling a controllable and selective conversion of polyethylene (PE) into gas-diesel or lubricating base oil. A series of embryonic, partial- and well-crystalline zeolites beta with adjustable porosity and acidity are prepared from mesoporous SBA-15. The catalysts and catalytic systems are studied with nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and adsorption kinetics and catalytic reactions. The adjustable porosity and acidity of zeolite-beta-based catalysts achieve a controllable selectivity toward gas-diesel or lubricating base oil for PE cracking. With a catalyst with mesopores and appropriate acid sites, a fast escape and reduced production of cracking of intermediates are observed, leading to a significant fraction (88.7%) of lubricating base oil. With more micropores, a high acid density, and strong acid strength, PE is multiply cracked into low carbon number hydrocarbons. The strong acid center of the zeolite is confirmed to facilitate significantly the activation of hydrogen (H2), and, an in situ ammonia poisoning strategy can significantly inhibit hydrogen transfer and effectively regulate the product distribution.

16.
ACS Nano ; 18(22): 14367-14376, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38767458

RESUMEN

In nature, chirality transfer refines biomolecules across all size scales, bestowing them with a myriad of sophisticated functions. Despite recent advances in replicating chirality transfer with biotic or abiotic building blocks, a molecular understanding of the underlying mechanism of chirality transfer remains a daunting challenge. In this paper, the coassembly of two types of glycopeptide molecules differing in capability of forming intermolecular hydrogen bonds enabled the involvement of discontinuous hydrogen bond, which allowed for a nanoscale chirality transfer from glycopeptide molecules to chiral micelles, yet inhibited the micrometer scale chirality transfer toward helix formation, leading to an achiral transfer from chiral micelles to planar monolayer. Upon stacking the monolayer into a bilayer, the nonsuperimposable front and back faces of the chiral micelles involved in the monolayer ribbons lead to the opposite rotation of two layers toward increasing the continuity of H-bonds. The resultant continuity triggered the symmetry breaking of stacked bilayers and thus reactivated the micrometer-scale chirality transfer toward the final helix. This work delineates a promising step toward a better understanding and replicating the naturally occurring chirality transfer events and will be instructive to future chiral material design.

17.
Langmuir ; 29(38): 12003-12, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23971901

RESUMEN

A method to form ordered mesoporous silica based on the use of folate supramolecular templates has been developed. Evidence based on in situ small-angle X-ray scattering (SAXS), electron microscopy, infrared spectroscopy, and in situ conductivity measurements are used to investigate the organic-inorganic interactions and synthesis mechanism. The behavior of folate molecules in solution differs distinctively from that of surfactants commonly used for the preparation of ordered mesoporous silica phases, notably with the absence of a critical micellar concentration. In situ SAXS studies reveal fluctuations in X-ray scattering intensities consistent with the condensation of the silica precursor surrounding the folate template and the growth of the silica mesostructure in the initial stages. High-angle X-ray diffraction shows that the folate template is well-ordered within the pores even after a few minutes of synthesis. Direct structural data for the self-assembly of folates into chiral tetramers within the pores of mesoporous silica provide evidence for the in register stacking of folate tetramers, resulting in a chiral surface of rotated tetramers, with a rotation angle of 30°. Additionally, the self-assembled folates within pores were capable of adsorbing a considerable amount of CO2 gas through the cavity space of the tetramers. The study demonstrates the validity of using a naturally occurring template to produce relevant and functional mesoporous materials.


Asunto(s)
Ácido Fólico/química , Dióxido de Silicio/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
18.
ACS Mater Au ; 3(6): 659-668, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38089657

RESUMEN

Mesoporous silica particles (MSPs) have been studied for their potential therapeutic uses in controlling obesity and diabetes. Previous studies have shown that the level of digestion of starch by α-amylase is considerably reduced in the presence of MSPs, and it has been shown to be caused by the adsorption of α-amylase by MSPs. In this study, we tested a hypothesis of enzymatic deactivation and measured the activity of α-amylase together with MSPs (SBA-15) using comparably small CNP-G3 (2-chloro-4-nitrophenyl alpha-d-maltotrioside) as a substrate. We showed that pore-incorporated α-amylase was active and displayed higher activity and stability compared to amylase in solution (the control). We attribute this to physical effects: the coadsorption of CNP-G3 on the MSPs and the relatively snug fit of the amylase in the pores. Biosorption in this article refers to the process of removal or adsorption of α-amylase from its solution phase into the same solution dispersed in, or adsorbed on, the MSPs. Large quantities of α-amylase were biosorbed (about 21% w/w) on the MSPs, and high values of the maximum reaction rate (Vmax) and the Michaelis-Menten constant (KM) were observed for the enzyme kinetics. These findings show that the reduced enzymatic activity for α-amylase on MSP observed here and in earlier studies was related to the large probe (starch) being too large to adsorb in the pores, and potato starch has indeed a hydrodynamic diameter much larger than the pore sizes of MSPs. Further insights into the interactions and environments of the α-amylase inside the MSPs were provided by 1H fast magic-angle spinning (MAS) nuclear magnetic resonance (NMR) and 13C/15N dynamic nuclear polarization MAS NMR experiments. It could be concluded that the overall fold and solvation of the α-amylase inside the MSPs were nearly identical to those in solution.

19.
Artículo en Inglés | MEDLINE | ID: mdl-36731867

RESUMEN

Mesoporous silica particles (MSPs) can be used as food additives, clinically for therapeutic applications, or as oral delivery vehicles. It has also been discussed to be used for a number of novel applications including treatment for diabetes and obesity. However, a major question for their possible usage has been if these particles persist structurally and retain their effect when passing through the gastrointestinal tract (GIT). A substantial breaking down of the particles could reduce function and be clinically problematic for safety issues. Hence, we investigated the biostability of MSPs of the SBA-15 kind prepared at large scales (100 and 1000 L). The MSPs were orally administered in a murine model and clinically in humans. A joint extraction and calcination method was developed to recover the MSPs from fecal mass, and the MSPs were characterized physically, structurally, morphologically, and functionally before and after GIT passage. Analyses with N2 adsorption, X-ray diffraction, electron microscopy, and as a proxy for general function, adsorption of the enzyme α-amylase, were conducted. The adsorption capacity of α-amylase on extracted MSPs was not reduced as compared to the pristine and control MSPs, and adsorption of up to 17% (w/w) was measured. It was demonstrated that the particles did not break down to any substantial degree and retained their function after passing through the GITs of the murine model and in humans. The fact the particles were not absorbed into the body was ascribed to that they were micron-sized and ingested as agglomerates and too big to pass the intestinal barrier. The results strongly suggest that orally ingested MSPs can be used for a number of clinical applications.

20.
ChemistryOpen ; 12(6): e202300060, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37259697

RESUMEN

A heterogenized alternative to the homogeneous precapture of CO2 with amines and subsequent hydrogenation to MeOH was developed using aminated silica and a Ru-MACHOTM catalyst. Commercial mesoporous silica was modified with three different amino-silane monomers and used as support for the Ru catalyst. These composites were studied by TEM and solid-state NMR spectroscopy before and after the catalytic reaction. These catalytic reactions were conducted at 155 °C at a H2 and CO2 pressures of 75 and 2 bar, respectively, with the heterogeneous system (gas-solid) being probed with gas-phase infrared spectroscopy used to quantify the resulting products. High turnover number (TON) values were observed for the samples aminated with secondary amines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA