Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Biophys J ; 115(10): 1885-1894, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30366631

RESUMEN

During ribosomal translation, nascent polypeptide chains (NCs) undergo a variety of physical processes that determine their fate in the cell. This study utilizes a combination of arrest peptide experiments and coarse-grained molecular dynamics to measure and elucidate the molecular origins of forces that are exerted on NCs during cotranslational membrane insertion and translocation via the Sec translocon. The approach enables deconvolution of force contributions from NC-translocon and NC-ribosome interactions, membrane partitioning, and electrostatic coupling to the membrane potential. In particular, we show that forces due to NC-lipid interactions provide a readout of conformational changes in the Sec translocon, demonstrating that lateral gate opening only occurs when a sufficiently hydrophobic segment of NC residues reaches the translocon. The combination of experiment and theory introduced here provides a detailed picture of the molecular interactions and conformational changes during ribosomal translation that govern protein biogenesis.


Asunto(s)
Membrana Celular/metabolismo , Péptidos/química , Péptidos/metabolismo , Canales de Translocación SEC/metabolismo , Simulación de Dinámica Molecular , Conformación Proteica , Transporte de Proteínas
2.
J Biol Chem ; 290(16): 10208-15, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25713070

RESUMEN

Translational arrest peptides (APs) are short stretches of polypeptides that induce translational stalling when synthesized on a ribosome. Mechanical pulling forces acting on the nascent chain can weaken or even abolish stalling. APs can therefore be used as in vivo force sensors, making it possible to measure the forces that act on a nascent chain during translation with single-residue resolution. It is also possible to score the relative strengths of APs by subjecting them to a given pulling force and ranking them according to stalling efficiency. Using the latter approach, we now report an extensive mutagenesis scan of a strong mutant variant of the Mannheimia succiniciproducens SecM AP and identify mutations that further increase the stalling efficiency. Combining three such mutations, we designed an AP that withstands the strongest pulling force we are able to generate at present. We further show that diproline stretches in a nascent protein act as very strong APs when translation is carried out in the absence of elongation factor P. Our findings highlight critical residues in APs, show that certain amino acid sequences induce very strong translational arrest and provide a toolbox of APs of varying strengths that can be used for in vivo force measurements.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Mannheimia/genética , Factores de Elongación de Péptidos/genética , Péptidos/química , Ribosomas/genética , Secuencia de Aminoácidos , Fenómenos Biomecánicos , Escherichia coli/genética , Escherichia coli/metabolismo , Mannheimia/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Extensión de la Cadena Peptídica de Translación , Factores de Elongación de Péptidos/metabolismo , Péptidos/genética , Péptidos/metabolismo , Ribosomas/metabolismo
3.
J Mol Biol ; 433(15): 167047, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-33989648

RESUMEN

In Gram-negative bacteria, periplasmic domains in inner membrane proteins are cotranslationally translocated across the inner membrane through the SecYEG translocon. To what degree such domains also start to fold cotranslationally is generally difficult to determine using currently available methods. Here, we apply Force Profile Analysis (FPA) - a method where a translational arrest peptide is used to detect folding-induced forces acting on the nascent polypeptide - to follow the cotranslational translocation and folding of the large periplasmic domain of the E. coli inner membrane protease LepB in vivo. Membrane insertion of LepB's two N-terminal transmembrane helices is initiated when their respective N-terminal ends reach 45-50 residues away from the peptidyl transferase center (PTC) in the ribosome. The main folding transition in the periplasmic domain involves all but the ~15 most C-terminal residues of the protein and happens when the C-terminal end of the folded part is ~70 residues away from the PTC; a smaller putative folding intermediate is also detected. This implies that wildtype LepB folds post-translationally in vivo, and shows that FPA can be used to study both co- and post-translational protein folding in the periplasm.


Asunto(s)
Escherichia coli/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Canales de Translocación SEC/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/genética , Modelos Moleculares , Mutación , Biosíntesis de Proteínas , Conformación Proteica , Pliegue de Proteína , Serina Endopeptidasas/genética
4.
Elife ; 62017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28556777

RESUMEN

Interaction between the nascent polypeptide chain and the ribosomal exit tunnel can modulate the rate of translation and induce translational arrest to regulate expression of downstream genes. The ribosomal tunnel also provides a protected environment for initial protein folding events. Here, we present a 2.9 Å cryo-electron microscopy structure of a ribosome stalled during translation of the extremely compacted VemP nascent chain. The nascent chain forms two α-helices connected by an α-turn and a loop, enabling a total of 37 amino acids to be observed within the first 50-55 Å of the exit tunnel. The structure reveals how α-helix formation directly within the peptidyltransferase center of the ribosome interferes with aminoacyl-tRNA accommodation, suggesting that during canonical translation, a major role of the exit tunnel is to prevent excessive secondary structure formation that can interfere with the peptidyltransferase activity of the ribosome.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biosíntesis de Proteínas , Estructura Secundaria de Proteína , Ribosomas/química , Ribosomas/metabolismo , Microscopía por Crioelectrón , Modelos Moleculares , Vibrio alginolyticus/metabolismo
5.
Nat Struct Mol Biol ; 22(2): 145-149, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25558985

RESUMEN

On average, every fifth residue in secretory proteins carries either a positive or a negative charge. In a bacterium such as Escherichia coli, charged residues are exposed to an electric field as they transit through the inner membrane, and this should generate a fluctuating electric force on a translocating nascent chain. Here, we have used translational arrest peptides as in vivo force sensors to measure this electric force during cotranslational chain translocation through the SecYEG translocon. We find that charged residues experience a biphasic electric force as they move across the membrane, including an early component with a maximum when they are 47-49 residues away from the ribosomal P site, followed by a more slowly varying component. The early component is generated by the transmembrane electric potential, whereas the second may reflect interactions between charged residues and the periplasmic membrane surface.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Potenciales de la Membrana/fisiología , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Membrana Celular/metabolismo , Canales de Translocación SEC
6.
Cell Rep ; 12(10): 1533-40, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26321634

RESUMEN

At what point during translation do proteins fold? It is well established that proteins can fold cotranslationally outside the ribosome exit tunnel, whereas studies of folding inside the exit tunnel have so far detected only the formation of helical secondary structure and collapsed or partially structured folding intermediates. Here, using a combination of cotranslational nascent chain force measurements, inter-subunit fluorescence resonance energy transfer studies on single translating ribosomes, molecular dynamics simulations, and cryoelectron microscopy, we show that a small zinc-finger domain protein can fold deep inside the vestibule of the ribosome exit tunnel. Thus, for small protein domains, the ribosome itself can provide the kind of sheltered folding environment that chaperones provide for larger proteins.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas Fúngicas/química , Pliegue de Proteína , Microscopía por Crioelectrón , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Escherichia coli , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Simulación de Dinámica Molecular , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Ribosomas/química , Termodinámica , Factores de Transcripción/biosíntesis , Factores de Transcripción/química , Factores de Transcripción/genética , Dedos de Zinc
7.
J Mol Biol ; 425(18): 3563-75, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-23827138

RESUMEN

While there has been considerable progress in designing protein-protein interactions, the design of proteins that bind polar surfaces is an unmet challenge. We describe the computational design of a protein that binds the acidic active site of hen egg lysozyme and inhibits the enzyme. The design process starts with two polar amino acids that fit deep into the enzyme active site, identifies a protein scaffold that supports these residues and is complementary in shape to the lysozyme active-site region, and finally optimizes the surrounding contact surface for high-affinity binding. Following affinity maturation, a protein designed using this method bound lysozyme with low nanomolar affinity, and a combination of NMR studies, crystallography, and knockout mutagenesis confirmed the designed binding surface and orientation. Saturation mutagenesis with selection and deep sequencing demonstrated that specific designed interactions extending well beyond the centrally grafted polar residues are critical for high-affinity binding.


Asunto(s)
Inhibidores Enzimáticos/química , Muramidasa/antagonistas & inhibidores , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Animales , Dominio Catalítico/genética , Biología Computacional , Modelos Moleculares , Simulación del Acoplamiento Molecular/métodos , Muramidasa/química , Muramidasa/genética , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Mapas de Interacción de Proteínas
8.
Nat Struct Mol Biol ; 19(10): 1018-22, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23001004

RESUMEN

Membrane proteins destined for insertion into the inner membrane of bacteria or the endoplasmic reticulum membrane in eukaryotic cells are synthesized by ribosomes bound to the bacterial SecYEG or the homologous eukaryotic Sec61 translocon. During co-translational membrane integration, transmembrane α-helical segments in the nascent chain exit the translocon through a lateral gate that opens toward the surrounding membrane, but the mechanism of lateral exit is not well understood. In particular, little is known about how a transmembrane helix behaves when entering and exiting the translocon. Using translation-arrest peptides from bacterial SecM proteins and from the mammalian Xbp1 protein as force sensors, we show that substantial force is exerted on a transmembrane helix at two distinct points during its transit through the translocon channel, providing direct insight into the dynamics of membrane integration.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Perros , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Glicosilación , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microsomas/metabolismo , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA