Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 299(2): 102896, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36639026

RESUMEN

We found previously that nuclear receptors (NRs) compete for heterodimerization with their common partner, retinoid X receptor (RXR), in a ligand-dependent manner. To investigate potential competition in their DNA binding, we monitored the mobility of retinoic acid receptor (RAR) and vitamin D receptor (VDR) in live cells by fluorescence correlation spectroscopy. First, specific agonist treatment and RXR coexpression additively increased RAR DNA binding, while both agonist and RXR were required for increased VDR DNA binding, indicating weaker DNA binding of the VDR/RXR dimer. Second, coexpression of RAR, VDR, and RXR resulted in competition for DNA binding. Without ligand, VDR reduced the DNA-bound fraction of RAR and vice versa, i.e., a fraction of RXR molecules was occupied by the competing partner. The DNA-bound fraction of either RAR or VDR was enhanced by its own and diminished by the competing NR's agonist. When treated with both ligands, the DNA-bound fraction of RAR increased as much as due to its own agonist, whereas that of VDR increased less. RXR agonist also increased DNA binding of RAR at the expense of VDR. In summary, competition between RAR and VDR for RXR is also manifested in their DNA binding in an agonist-dependent manner: RAR dominates over VDR in the absence of agonist or with both agonists present. Thus, side effects of NR-ligand-based (retinoids, thiazolidinediones) therapies may be ameliorated by other NR ligands and be at least partly explained by reduced DNA binding due to competition. Our results also complement the model of NR action by involving competition both for RXR and for DNA sites.


Asunto(s)
Receptores de Calcitriol , Receptores de Ácido Retinoico , Receptores X Retinoide , ADN/metabolismo , Ligandos , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos y Nucleares , Receptores X Retinoide/química , Receptores X Retinoide/metabolismo , Tretinoina/farmacología , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/metabolismo
2.
J Biol Chem ; 295(29): 10045-10061, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32513869

RESUMEN

Retinoid X receptor (RXR) plays a pivotal role as a transcriptional regulator and serves as an obligatory heterodimerization partner for at least 20 other nuclear receptors (NRs). Given a potentially limiting/sequestered pool of RXR and simultaneous expression of several RXR partners, we hypothesized that NRs compete for binding to RXR and that this competition is directed by specific agonist treatment. Here, we tested this hypothesis on three NRs: peroxisome proliferator-activated receptor gamma (PPARγ), vitamin D receptor (VDR), and retinoic acid receptor alpha (RARα). The evaluation of competition relied on a nuclear translocation assay applied in a three-color imaging model system by detecting changes in heterodimerization between RXRα and one of its partners (NR1) in the presence of another competing partner (NR2). Our results indicated dynamic competition between the NRs governed by two mechanisms. First, in the absence of agonist treatment, there is a hierarchy of affinities between RXRα and its partners in the following order: RARα > PPARγ > VDR. Second, upon agonist treatment, RXRα favors the liganded partner. We conclude that recruiting RXRα by the liganded NR not only facilitates a stimulus-specific cellular response but also might impede other NR pathways involving RXRα.


Asunto(s)
PPAR gamma/metabolismo , Multimerización de Proteína , Receptores de Calcitriol/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Receptor alfa X Retinoide/metabolismo , Células HEK293 , Humanos , PPAR gamma/genética , Receptores de Calcitriol/genética , Receptor alfa de Ácido Retinoico/genética , Receptor alfa X Retinoide/genética
3.
Nucleic Acids Res ; 46(20): 10649-10668, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30445637

RESUMEN

Molecular combing and gel electrophoretic studies revealed endogenous nicks with free 3'OH ends at ∼100 kb intervals in the genomic DNA (gDNA) of unperturbed and G1-synchronized Saccharomyces cerevisiae cells. Analysis of the distribution of endogenous nicks by Nick ChIP-chip indicated that these breaks accumulated at active RNA polymerase II (RNAP II) promoters, reminiscent of the promoter-proximal transient DNA breaks of higher eukaryotes. Similar periodicity of endogenous nicks was found within the ribosomal rDNA cluster, involving every ∼10th of the tandemly repeated 9.1 kb units of identical sequence. Nicks were mapped by Southern blotting to a few narrow regions within the affected units. Three of them were overlapping the RNAP II promoters, while the ARS-containing IGS2 region was spared of nicks. By using a highly sensitive reverse-Southwestern blot method to map free DNA ends with 3'OH, nicks were shown to be distinct from other known rDNA breaks and linked to the regulation of rDNA silencing. Nicks in rDNA and the rest of the genome were typically found at the ends of combed DNA molecules, occasionally together with R-loops, comprising a major pool of vulnerable sites that are connected with transcriptional regulation.


Asunto(s)
ADN de Hongos/genética , ADN de Cadena Simple/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Saccharomyces cerevisiae/genética , Southwestern Blotting/métodos , Mapeo Cromosómico/métodos , Roturas del ADN de Cadena Simple , División del ADN , ADN de Hongos/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , ADN de Cadena Simple/metabolismo , Inestabilidad Genómica , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencias Repetidas en Tándem , Transcripción Genética
4.
In Vivo ; 38(2): 587-597, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38418149

RESUMEN

BACKGROUND/AIM: Since the use of anaesthetics has the drawback of altering radiotracer distribution, preclinical positron emission tomography (PET) imaging findings of anaesthetised animals must be carefully handled. This study aimed at assessing the cerebral [18F]F-FDG uptake pattern in healthy Wistar rats under four different anaesthesia protocols using microPET/magnetic resonance imaging (MRI) examinations. MATERIALS AND METHODS: Post-injection of 15±1.2 MBq of [18F]F-FDG, either while awake or during the isoflurane-induced incubation phase was applied. Prior to microPET/MRI imaging, one group of the rats was subjected to forane-only anaesthesia while the other group was anaesthetised with the co-administration of forane and dexmedetomidine/Dexdor® Results: While as for the whole brain it was the addition of dexmedetomidine/Dexdor® to the anaesthesia protocol that generated the differences between the radiotracer concentrations of the investigated groups, regarding the cortex, the [18F]F-FDG accumulation was rather affected by the way of incubation. To ensure the most consistent and highest uptake, forane-induced anaesthesia coupled with an awake uptake condition seemed to be most suitable method of anaesthetisation for cerebral metabolic assessment. Diminished whole brain and cortical tracer accumulation detected upon dexmedetomidine/Dexdor® administration highlights the significance of the mechanism of action of different anaesthetics on radiotracer pharmacokinetics. CONCLUSION: Overall, the standardization of PET protocols is of utmost importance to avoid the confounding factors derived from anaesthesia.


Asunto(s)
Anestesia , Anestésicos , Dexmedetomidina , Isoflurano , Ratas , Animales , Fluorodesoxiglucosa F18/metabolismo , Dexmedetomidina/farmacología , Dexmedetomidina/metabolismo , Ratas Wistar , Encéfalo , Tomografía de Emisión de Positrones/métodos , Anestésicos/farmacología , Anestésicos/metabolismo , Isoflurano/farmacología , Isoflurano/metabolismo , Radiofármacos/farmacología
5.
In Vivo ; 38(2): 574-586, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38418132

RESUMEN

BACKGROUND/AIM: Herein we assessed the feasibility of imaging protocols using both hypoxia-specific [18F]F-FAZA and [18F]F-FDG in bypassing the limitations derived from the non-specific findings of [18F]F-FDG PET imaging of tumor-related hypoxia. MATERIALS AND METHODS: CoCl2-generated hypoxia was induced in multidrug resistant (Pgp+) or sensitive (Pgp-) human ovarian (Pgp- A2780, Pgp+ A2780AD), and cervix carcinoma (Pgp- KB-3-1, Pgp+ KB-V-1) cell lines to establish corresponding tumor-bearing mouse models. Prior to [18F]F-FDG/[18F]F-FAZA-based MiniPET imaging, in vitro [18F]F-FDG uptake measurements and western blotting were used to verify the presence of hypoxia. RESULTS: Elevated GLUT-1, and hexokinase enzyme-II expression driven by CoCl2-induced activation of hypoxia-inducible factor-1α explains enhanced cellular [18F]F-FDG accumulation. No difference was observed in the [18F]F-FAZA accretion of Pgp+ and Pgp- tumors. Tumor-to-muscle ratios for [18F]F-FAZA measured at 110-120 min postinjection (6.2±0.1) provided the best contrasted images for the delineation of PET-oxic and PET-hypoxic intratumor regions. Although all tumors exhibited heterogenous uptake of both radiopharmaceuticals, greater differences for [18F]F-FAZA between the tracer avid and non-accumulating regions indicate its superiority over [18F]F-FDG. Spatial correlation between [18F]F-FGD and [18F]F-FAZA scans confirms that hypoxia mostly occurs in regions with highly active glucose metabolism. CONCLUSION: The addition of [18F]F-FAZA PET to [18F]F-FGD imaging may add clinical value in determining hypoxic sub-regions.


Asunto(s)
Cobalto , Fluorodesoxiglucosa F18 , Neoplasias Ováricas , Humanos , Femenino , Animales , Ratones , Hipoxia Tumoral , Xenoinjertos , Línea Celular Tumoral , Neoplasias Ováricas/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Hipoxia/diagnóstico por imagen
6.
Elife ; 122023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36763413

RESUMEN

ABCG2 is an exporter-type ABC protein that can expel numerous chemically unrelated xeno- and endobiotics from cells. When expressed in tumor cells or tumor stem cells, ABCG2 confers multidrug resistance, contributing to the failure of chemotherapy. Molecular details orchestrating substrate translocation and ATP hydrolysis remain elusive. Here, we present methods to concomitantly investigate substrate and nucleotide binding by ABCG2 in cells. Using the conformation-sensitive antibody 5D3, we show that the switch from the inward-facing (IF) to the outward-facing (OF) conformation of ABCG2 is induced by nucleotide binding. IF-OF transition is facilitated by substrates, and hindered by the inhibitor Ko143. Direct measurements of 5D3 and substrate binding to ABCG2 indicate that the high-to-low affinity switch of the drug binding site coincides with the transition from the IF to the OF conformation. Low substrate binding persists in the post-hydrolysis state, supporting that dissociation of the ATP hydrolysis products is required to reset the high substrate affinity IF conformation of ABCG2.


Asunto(s)
Adenosina Trifosfato , Adenosina Trifosfato/metabolismo , Conformación Proteica
7.
Nucleic Acids Res ; 37(17): e112, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19553189

RESUMEN

Double-stranded (ds), as well as denatured, single-stranded (ss) DNA samples can be analyzed on urea-agarose gels. Here we report that after denaturation by heat in the presence of 8 M urea, the two strands of the same ds DNA fragment of approximately 1-20-kb size migrate differently in 1 M urea containing agarose gels. The two strands are readily distinguished on Southern blots by ss-specific probes. The different migration of the two strands could be attributed to their different, base composition-dependent conformation impinging on the electrophoretic mobility of the ss molecules. This phenomenon can be exploited for the efficient preparation of strand-specific probes and for the separation of the complementary DNA strands for subsequent analysis, offering a new tool for various cell biological research areas.


Asunto(s)
ADN Complementario/aislamiento & purificación , Electroforesis en Gel de Agar/métodos , Urea/química , ADN Complementario/química , ADN de Hongos/química , ADN de Hongos/aislamiento & purificación , ADN de Cadena Simple/aislamiento & purificación , Desnaturalización de Ácido Nucleico , Saccharomyces cerevisiae/genética
8.
Cytometry A ; 73(3): 238-45, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18205197

RESUMEN

We explore the possibilities offered by flow cytometric microbead analysis to develop high throughput methods for the detection of deletions/insertions and single-strand DNA lesions. The products of PCR reactions derived from reference and test samples are denatured and reannealed, then exposed to enzymatic or chemical treatments distinguishing homoduplices from heteroduplices. The biotin- and dye labeled reaction products are immobilized on microbeads and the homo- and heteroduplices are assessed in separate fluorescence channels, by flow cytometry. Using a model system based on the mixed lineage leukemia gene breakpoint cluster region, we demonstrate that deletions and insertions in genomic DNA can be detected, using S1 nuclease and chemical cleavage to distinguish hetero- from homoduplices, or a restriction enzyme cleaving only the homoduplices. Single-strand discontinuities can also be detected, by combining nick-translation, using labeled nucleotide, and flow cytometric microbead analysis. The methodical approaches demonstrated are applicable in a versatile manner in basic cell and molecular biological research and also promise direct application for high throughput screening of genetic diseases and lesions, including insertions or deletions of short sequence elements and single-strand lesions formed at hypersensitive sites in response to apoptotic stimuli.


Asunto(s)
ADN de Cadena Simple/análisis , Citometría de Flujo/métodos , Eliminación de Gen , Análisis Heterodúplex/métodos , Microesferas , Mutagénesis Insercional/métodos , ADN de Cadena Simple/genética , Humanos
9.
Sci Rep ; 7(1): 12734, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28986581

RESUMEN

Current approaches have limitations in providing insight into the functional properties of particular nucleosomes in their native molecular environment. Here we describe a simple and powerful method involving elution of histones using intercalators or salt, to assess stability features dependent on DNA superhelicity and relying mainly on electrostatic interactions, respectively, and measurement of the fraction of histones remaining chromatin-bound in the individual nuclei using histone type- or posttranslational modification- (PTM-) specific antibodies and automated, quantitative imaging. The method has been validated in H3K4me3 ChIP-seq experiments, by the quantitative assessment of chromatin loop relaxation required for nucleosomal destabilization, and by comparative analyses of the intercalator and salt induced release from the nucleosomes of different histones. The accuracy of the assay allowed us to observe examples of strict association between nucleosome stability and PTMs across cell types, differentiation state and throughout the cell-cycle in close to native chromatin context, and resolve ambiguities regarding the destabilizing effect of H2A.X phosphorylation. The advantages of the in situ measuring scenario are demonstrated via the marked effect of DNA nicking on histone eviction that underscores the powerful potential of topological relaxation in the epigenetic regulation of DNA accessibility.


Asunto(s)
Imagenología Tridimensional , Nucleosomas/metabolismo , Animales , Automatización , Línea Celular Tumoral , Doxorrubicina/farmacología , Etidio/metabolismo , Humanos , Ratones , Nucleosomas/efectos de los fármacos , Sales (Química)/farmacología
10.
Methods Mol Biol ; 567: 99-111, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19588088

RESUMEN

Our understanding of epigenetics has been transformed in recent years by the advance of technological possibilities based primarily on a powerful tool, chromatin immunoprecipitation (ChIP). However, in many cases, the detection of epigenetic changes requires methods providing a high-throughput (HTP) platform. Cytometry has opened a novel approach for the quantitative measurement of molecules, including PCR products, anchored to appropriately addressed microbeads (Pataki et al. 2005. Cytometry 68, 45-52). Here we show selected examples for the utility of two different cytometry-based platforms of epigenetic analysis: ChIP-on-beads, a flow-cytometric test of local histone modifications (Szekvolgyi et al. 2006. Cytometry 69, 1086-1091), and the laser scanning cytometry-based measurement of global epigenetic modifications that might help predict clinical behavior in different pathological conditions. We anticipate that such alternative tools may shortly become indispensable in clinical practice, translating the systematic screening of epigenetic tags from basic research into routine diagnostics of HTP demand.


Asunto(s)
Epigénesis Genética/fisiología , Citometría de Flujo/métodos , Técnicas Genéticas , Animales , Inmunoprecipitación de Cromatina/métodos , Metilación de ADN/genética , Epigénesis Genética/genética , Humanos , Microscopía Confocal/métodos , Microesferas , Proyectos de Investigación
11.
Histochem Cell Biol ; 125(1-2): 63-73, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16195888

RESUMEN

Phenomena involving the disassembly of chromosomes to approximately 50 kbp double-stranded fragments upon protein denaturing treatments of normal and apoptotic mammalian nuclei as well as yeast protoplasts may be an indication of special, hypersensitive regions positioned regularly at loop-size intervals in the eukaryotic chromatin. Here we show evidence in yeast cell systems that loop-size fragmentation can occur in any phase of the cell cycle and that the plating efficiency of these cells is approximately 100%. The possibility of sequence specificity was investigated within the breakpoint cluster region (bcr) of the human MLL gene, frequently rearranged in certain leukemias. Our data suggest that DNA isolated from yeast cultures or mammalian cell lines carry nicks or secondary structures predisposing DNA for a specific nicking activity, at non-random positions. Furthermore, exposure of MLL bcr-carrying plasmid DNA to S1 nuclease or nuclear extracts or purified topoisomerase II elicited cleavages at the nucleotide positions of nick formation on human genomic DNA. These data support the possibility that certain sequence elements are preferentially involved in the cleavage processes responsible for the en masse disassembly of chromatin to loop-size fragments upon isolation of DNA from live eukaryotic cells.


Asunto(s)
Cromatina/ultraestructura , Células Eucariotas/ultraestructura , Apoptosis , Ciclo Celular/fisiología , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , ADN/biosíntesis , ADN/genética , Fragmentación del ADN , Replicación del ADN , Electroforesis en Gel de Agar , Citometría de Flujo , N-Metiltransferasa de Histona-Lisina , Humanos , Microscopía Confocal , Proteína de la Leucemia Mieloide-Linfoide/genética , Desnaturalización Proteica , Saccharomyces cerevisiae/metabolismo , Endonucleasas Específicas del ADN y ARN con un Solo Filamento/química
12.
Cytometry A ; 68(1): 45-52, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16163684

RESUMEN

BACKGROUND: Introduction of microbeads into flow-cytometry has created a new scenario, making quantitative measurement of molecules dispersed in a homogeneous phase, with an extremely wide realm of already realized and potential applications possible. Development of this field has lead to specialized instrumentation and microbead arrays, dedicated to certain applications. METHODS: Formaldehyde-fixed yeast and bacterial cells were conjugated with avidin and applied as microbeads, to establish a simple, convenient, flexible, and inexpensive flow-cytometric platform for various immunological and biochemical assays. RESULTS: We have tested these "biological microbeads" for the simultaneous titration of human alpha-fetoprotein (AFP) and human Chorionic Gonadotropin (betahCG) hormone levels, for the titration of proteolytic and nucleolytic (restriction) enzymes, and for quantitative PCR, using biotinylated and fluorescent primers. CONCLUSIONS: The use of biological microbeads for various immunological and biochemical assays has been demonstrated. The flow-cytometric methods proved to be at least as sensitive as the standard biochemical or immunological tests. For proteinase K activity measurements, a single enzyme molecule in the sample could be detected. The sensitivity, versatility, and low cost of the assays may advance flow-cytometry to become a central methodological platform in most laboratories. The biological microbeads offer virtually unlimited possibilities for fluorescent labeling (addressing), conjugation of ligand binding molecules, and they are easy to handle and perform well in a multiplex format.


Asunto(s)
Enzimas/análisis , Citometría de Flujo/métodos , Microesferas , Reacción en Cadena de la Polimerasa/métodos , Volumetría/métodos , Avidina/química , Biotinilación , Caseínas/química , Gonadotropina Coriónica Humana de Subunidad beta/análisis , Enzimas de Restricción del ADN/análisis , Endopeptidasa K/análisis , Colorantes Fluorescentes/química , Formaldehído/química , Humanos , Inmunoensayo/métodos , Saccharomyces cerevisiae/química , Staphylococcus aureus/química , Estreptavidina/química , alfa-Fetoproteínas/análisis
13.
J Cell Biochem ; 89(6): 1193-205, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12898517

RESUMEN

Upon isolation of DNA from normal eukaryotic cells by standard methods involving extensive proteolytic treatment, a rather homogeneous population of loop-size, double-stranded DNA fragments is regularly obtained. These DNA molecules can be efficiently end-labeled by the DNA polymerase I Klenow fragment, as well as by a 3'- to -5'-exonuclease-free Klenow enzyme, but not by terminal transferase (TdT) unless the ends have been filled up by Klenow, suggesting that dominantly 5' protruding termini are generated upon fragmentation. The filled-up termini were used for cloning the distal parts of the approximately 50 kb fragments. BLAST analysis of the sequence of several clones allowed us to determine the sequence of the non-cloned side of the breakpoints. Comparison of 25, 600 bp-long breakpoint sequences demonstrated prevalence of repetitive elements. Consensus motives characteristic of the breakpoint sequences have been identified. Several sequences exhibit peculiar computed conformational characteristics, with sharp transition or center of symmetry located exactly at the breakpoint. Our data collectively suggest that chromatin fragmentation involves nucleolytic cleavages at fragile/hypersensitive sites delimiting loop-size fragments in a non-random manner. Interestingly, the sequence characteristics of the breakpoints are reminiscent of certain breakpoint cluster regions frequently subject to gene rearrangements.


Asunto(s)
Cromatina/química , Cromatina/aislamiento & purificación , Fragmentación del ADN , Animales , Secuencia de Bases , ADN Nucleotidilexotransferasa , ADN Polimerasa I , Electroforesis en Gel Bidimensional , Células HL-60 , Humanos , Células Jurkat , Ratones , Células 3T3 NIH , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA