RESUMEN
The available differentiating tests for Chlamydia are based on detection of genetic material and only give information about the actual infection status, but reveal nothing of past infections. As the use of serological methods increases the window of detection, the goal of this study was to investigate if it is possible to develop a differentiating serological test for antibodies against Chlamydia species in chicken sera. Focus was on C. psittaci, C. gallinacea, and two closely related species, i.e. C. abortus and C. avium. To enable differentiating serology, a bead-based Luminex suspension array was constructed, using peptides as antigens, derived from known immunoreactive Chlamydia proteins. For the majority of these peptides, species-specific seroreactivity in mammalian sera has been reported in literature. The suspension array correctly identified antibodies against various Chlamydia species in sera from experimentally infected mice, and was also able to differentiate between antibodies against C. psittaci and C. gallinacea in sera from experimentally infected chickens. In field sera, signals were difficult to interpret as insufficient sera from experimentally infected chickens were available for evaluating the seroreactivity of all peptides. Nevertheless, results of the suspension array with field sera are supported by published data on the occurrence of C. gallinacea in Dutch layers, thereby demonstrating the proof of concept of multiplex serology for Chlamydial species in poultry.
Asunto(s)
Anticuerpos Antibacterianos , Antígenos Bacterianos , Técnicas Bacteriológicas , Infecciones por Chlamydia , Péptidos , Animales , Ratones , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Pollos , Chlamydia , Infecciones por Chlamydia/diagnóstico , Infecciones por Chlamydia/veterinaria , Péptidos/química , Péptidos/metabolismo , Técnicas Bacteriológicas/métodos , Técnicas Bacteriológicas/veterinariaRESUMEN
Chlamydia psittaci was considered the predominant chlamydial species in poultry until Chlamydia gallinacea was discovered in 2009. C. psittaci is a zoonotic obligate intracellular bacterium reported in more than 465 bird species including poultry. In poultry, infections can result in asymptomatic disease, but also in more severe systemic illness. The zoonotic potential of C. gallinacea has yet to be proven. Infections in poultry appear to be asymptomatic and in recent prevalence studies C. gallinacea was the main chlamydial species found in chickens. The high prevalence of C. gallinacea resulted in the question if an infection with C. gallinacea might protect against an infection with C. psittaci. To investigate possible cross protection, chickens were inoculated with C. gallinacea NL_G47 and subsequently inoculated with either a different strain of C. gallinacea (NL_F725) or C. psittaci. Chickens that had not been pre-inoculated with C. gallinacea NL_G47 were used as a C. gallinacea or C. psittaci infection control. In the groups that were inoculated with C. psittaci, no difference in pharyngeal or cloacal shedding, or in tissue dissemination was observed between the control group and the pre-inoculated group. In the groups inoculated with C. gallinacea NL_F725, shedding in cloacal swabs and tissues dissemination was lower in the group pre-inoculated with C. gallinacea NL_G47. These results indicate previous exposure to C. gallinacea does not protect against an infection with C. psittaci, but might protect against a new infection of C. gallinacea.
Asunto(s)
Infecciones por Chlamydia , Chlamydia , Enfermedades de las Aves de Corral , Animales , Pollos , Infecciones por Chlamydia/prevención & control , Infecciones por Chlamydia/veterinaria , Chlamydophila psittaci , Enfermedades de las Aves de Corral/prevención & controlRESUMEN
In 2016, an outbreak of Chlamydia avium infection occurred among Picazuro pigeons (Patagioenas picazuro) living in an aviary in the Netherlands. Molecular typing revealed a unique strain of C. avium. Our findings show that C. avium infection, which usually causes subclinical infection, can cause fatal disease in pigeons.
Asunto(s)
Infecciones por Chlamydia , Chlamydia , Animales , Columbidae , Países Bajos/epidemiologíaAsunto(s)
Infecciones por Chlamydia/transmisión , Chlamydia/aislamiento & purificación , Neumonía Bacteriana/transmisión , Zoonosis/transmisión , Adulto , Animales , Chlamydia/genética , Infecciones Comunitarias Adquiridas/transmisión , ADN Bacteriano/aislamiento & purificación , Femenino , Cobayas , Humanos , Masculino , Insuficiencia Respiratoria/etiologíaRESUMEN
BACKGROUND: In 2021, a novel group of Chlamydia strains in wild birds was classified as avian Chlamydia abortus, with unknown zoonotic potential. We report relevant features of avian C abortus infections from a Dutch family cluster and unrelated historical cases using clinical, epidemiological, and microbiological data. METHODS: An outbreak of avian C abortus started in the Netherlands in December, 2022. Source investigation was done using questionnaires to interview patients and environmental sampling. The outbreak strain of avian C abortus was cultured from three patients from whom sufficient material was available for culture and underwent whole-genome analysis. The outbreak strains and retrospective cohort study strains previously submitted to the National Human Psittacosis surveillance programme in the Netherlands between 2010 and 2022 were typed by partial ompA sequencing. Strains with the same aberrant ompA genotype were further analysed with XerC gene plasmid analysis and compared with closely related Chlamydia sequences available in GenBank. FINDINGS: An avian C abortus strain caused a cluster of respiratory illness in four family members. Three patients were hospitalised with community-acquired pneumonia, one of whom was admitted to the intensive care unit. The faeces of wild birds were considered a probable source for the index infection. For two family members, human-to-human transmission was a plausible route. Ten historical cases could be identified with avian C abortus with the same ompA genotype. All patients had been admitted to hospital, at least five developed pneumonia, and one died. INTERPRETATION: This cluster supports that avian C abortus strains can cause human infections and underlines that human-to-human transmission should be considered when tracing the source of such infections. FUNDING: National Institute for Public Health and the Environment and Dutch Ministry of Agriculture, Fisheries, Food Security and Nature. TRANSLATION: For the Dutch translation of the abstract see Supplementary Materials section.
RESUMEN
Chlamydia gallinacea is a recently discovered and widespread obligate intracellular bacterium in chickens. In chickens, infections appear to be asymptomatic, but can result in reduced weight gain in broilers. Molecular typing revealed C. gallinacea is genetically diverse which might lead to differences in pathogenic potential between strains. However, studies about the pathogenesis of different C. gallinacea strains are still limited. In this study, the pathogenesis of C. gallinacea strain NL_G47 was investigated in three consecutive animal experiments. The first experiment served as a pilot in which a maximum culturable dose was administered orally to 13 chickens. Excretion of chlamydial DNA in cloacal swabs was measured during 11 days post infection, but no clinical signs were observed. The second and third experiment were a repetition of the first experiment, but now chickens were sacrificed at consecutive time points to investigate tissue dissemination of C. gallinacea. Again excretion of chlamydial DNA in cloacal swabs was detected and no clinical signs were observed in line with the results of the first experiment. PCR and immunohistochemistry of tissue samples revealed C. gallinacea infected the epithelium of the jejunum, ileum and caecum. Furthermore, C. gallinacea could be detected in macrophages in the lamina propria and in follicular dendritic cells (FDCs) of the B cell follicles in the caecal tonsil. Results of serology showed a systemic antibody response from day seven or eight and onward in all three experiments. The experiments with strain NL_G47 confirmed observations from field studies that C. gallinacea infection does not result in acute clinical disease and mainly resides in the epithelium of the gut. Whether the presence of C. gallinacea results in chronic persistent infections with long term and less obvious health effects in line with observations on other infections caused by Chlamydiae, needs further investigation.
Asunto(s)
Pollos/microbiología , Infecciones por Chlamydia/veterinaria , Chlamydia/patogenicidad , Enfermedades de las Aves de Corral/microbiología , Aves de Corral/microbiología , Administración Oral , Animales , Anticuerpos Antibacterianos/sangre , Infecciones por Chlamydia/microbiología , Macrófagos/microbiología , Enfermedades de las Aves de Corral/inmunología , VirulenciaRESUMEN
Chlamydia (C.) caviae is a known pathogen in guinea pigs, causing conjunctivitis, respiratory infections and abortions. Recently, a C. caviae-induced zoonotic link was identified as the etiology of severe community-acquired pneumonia in humans. Here, 784 conjunctival and rectal swabs originating from 260 guinea pigs and 110 rabbits from 64 husbandries in Switzerland, as well as 200 composite conjunctival swabs originating from 878 guinea pigs from 37 husbandries in The Netherlands were examined by real-time PCR followed by conventional PCR and sequencing. Chlamydiaceae were detected in 2.3% (18/784) and 12.5% (25/200) of all Swiss and Dutch samples, respectively. An overall C. caviae occurrence was detected in 2.7% (7/260) and 8.9% (78/878) of all Swiss and Dutch guinea pigs, respectively. OmpA genotyping of 64 C. caviae-positive samples resulted in 33 sequences sharing 100% nucleotide identity with the strains isolated from the zoonotic transmission cases in The Netherlands. However, all ompA sequences of this study were distinct from the C. caviae GPIC reference strain. C. caviae was not detected in rabbits but C. psittaci genotype A was identified in guinea pigs and rabbits, raising concerns about the importance of these animal species as novel zoonotic sources for C. psittaci.
RESUMEN
Chlamydia gallinacea is an obligate intracellular bacterium that has recently been added to the family of Chlamydiaceae. C. gallinacea is genetically diverse, widespread in poultry and a suspected cause of pneumonia in slaughterhouse workers. In poultry, C. gallinacea infections appear asymptomatic, but studies about the pathogenic potential are limited. In this study two novel sequence types of C. gallinacea were isolated from apparently healthy chickens. Both isolates (NL_G47 and NL_F725) were closely related to each other and have at least 99.5% DNA sequence identity to C. gallinacea Type strain 08-1274/3. To gain further insight into the pathogenic potential, infection experiments in embryonated chicken eggs and comparative genomics with Chlamydia psittaci were performed. C. psittaci is a ubiquitous zoonotic pathogen of birds and mammals, and infection in poultry can result in severe systemic illness. In experiments with embryonated chicken eggs, C. gallinacea induced mortality was observed, potentially strain dependent, but lower compared to C. psittaci induced mortality. Comparative analyses confirmed all currently available C. gallinacea genomes possess the hallmark genes coding for known and potential virulence factors as found in C. psittaci albeit to a reduced number of orthologues or paralogs. The presence of potential virulence factors and the observed mortality in embryonated eggs indicates C. gallinacea should rather be considered as an opportunistic pathogen than an innocuous commensal.
Asunto(s)
Infecciones por Chlamydia/veterinaria , Chlamydia/patogenicidad , Chlamydophila psittaci/patogenicidad , Enfermedades de las Aves de Corral/microbiología , Psitacosis/veterinaria , Animales , Embrión de Pollo , Pollos/microbiología , Chlamydia/genética , Infecciones por Chlamydia/microbiología , Chlamydophila psittaci/genética , Estudios de Asociación Genética , Filogenia , Psitacosis/microbiología , Virulencia/genéticaRESUMEN
BACKGROUND: Feral pigeons (Columba livia domestica) live and breed in many city centres and contact with their droppings can be a hazard for human health if the birds carry Chlamydia psittaci. OBJECTIVE: The aim of this study was to establish whether pigeon droppings in two Dutch cities (Utrecht and Haarlem) contain C. psittaci and/or C. avium, which could be a potential hazard for transmission to humans. METHODS: In May 2017 seven feral pigeon 'hot spots' with between 5 and 40+ pigeons present were identified in two cities by visual observations over two days. During the following ten days fresh droppings were collected at these hot spots and the samples were pooled per three droppings to achieve 40-41 samples per city. Samples were analysed for Chlamydia DNA with a broad range 23S Chlamydiaceae Real-Time PCR and positive samples were tested with a specific C. psittaci and C. avium Real-Time PCR. Positive C. psittaci samples were genotyped. RESULTS: C. psittaci and C. avium were detected in both cities. For C. psittaci the prevalences in Utrecht and Haarlem were 2.4% and 7.5%, respectively; for C. avium 36.6% and 20.0%, respectively. One sample contained both species. All C. psittaci samples belonged to genotype B. CONCLUSION: C. psittaci and C. avium are present in feral pigeon droppings in Utrecht and Haarlem. Human contact with droppings from infected pigeons or inhalation of dust from dried droppings represent a potential hazard to public health.
Asunto(s)
Enfermedades de las Aves/microbiología , Chlamydia/aislamiento & purificación , Chlamydophila psittaci/aislamiento & purificación , Heces/microbiología , Animales , Animales Salvajes , Infecciones por Chlamydia , Infecciones por Chlamydophila , Ciudades , Columbidae , Países Bajos , Reacción en Cadena de la PolimerasaRESUMEN
In poultry several Chlamydia species have been detected, but Chlamydia psittaci and Chlamydia gallinacea appear to be most prevalent and important. Chlamydia psittaci is a well-known zoonosis and is considered to be a pathogen of poultry. Chlamydia gallinacea has been described more recently. Its avian pathogenicity and zoonotic potential have to be further elucidated. Within the Netherlands no data were available on the presence of Chlamydia on poultry farms. As part of a surveillance programme for zoonotic pathogens in farm animals, we investigated pooled faecal samples from 151 randomly selected layer farms. On a voluntary base, 69 farmers, family members or farm workers from these 151 farms submitted a throat swab. All samples were tested with a generic 23S Chlamydiaceae PCR followed by a species specific PCR for C. avium, C. gallinacea and C. psittaci. C. avium and psittaci DNA was not detected at any of the farms. At 71 farms the positive result could be confirmed as C. gallinacea. Variables significantly associated with the presence of C. gallinacea in a final multivariable model were 'age of hens,' 'use of bedding material' and 'the presence of horses.' The presence of C. gallinacea was associated with neither clinical signs, varying from respiratory symptoms, nasal and ocular discharges to diarrhoea, nor with a higher mortality rate the day before the visit. All throat swabs from farmers, family members or farm workers tested negative for Chlamydia DNA, giving no further indication for possible bird-to-human (or human-to-bird) transmission.