Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38854069

RESUMEN

Targeted mass spectrometry (MS) methods are powerful tools for selective and sensitive analysis of peptides identified by global discovery experiments. Selected reaction monitoring (SRM) is currently the most widely accepted MS method in the clinic, due to its reliability and analytical performance. However, due to limited throughput and the difficulty in setting up and analyzing large scale assays, SRM and parallel reaction monitoring (PRM) are typically used only for very refined assays of on the order of 100 targets or less. Here we introduce a new MS platform with a quadrupole mass filter, collision cell, linear ion trap architecture that has increased acquisition rates compared to the analogous hardware found in the Orbitrap™ Tribrid™ series instruments. The platform can target more analytes than existing SRM and PRM instruments - in the range of 5000 to 8000 peptides per hour. This capability for high multiplexing is enabled by acquisition rates of 70-100 Hz for peptide applications, and the incorporation of real-time chromatogram alignment that adjusts for retention time drift and enables narrow time scheduled acquisition windows. Finally, we describe a Skyline external software tool that implements the building of targeted methods based on data independent acquisition chromatogram libraries or unscheduled analysis of heavy labeled standards. We show that the platform delivers ~10x lower LOQs than traditional SRM analysis for a highly multiplex assay and also demonstrate how analytical figures of merit change while varying method duration with a constant number of analytes, or by keeping a constant time duration while varying the number of analytes.

2.
bioRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38853838

RESUMEN

Advances in proteomics and mass spectrometry have enabled the study of limited cell populations, such as single-cell proteomics, where high-mass accuracy instruments are typically required. While triple quadrupoles offer fast and sensitive nominal resolution measurements, these instruments are effectively limited to targeted proteomics. Linear ion traps (LITs) offer a versatile, cost-effective alternative capable of both targeted and global proteomics. We demonstrate a workflow using a newly released, hybrid quadrupole-LIT instrument for developing targeted proteomics assays from global data-independent acquisition (DIA) measurements without needing high-mass accuracy. Gas-phase fraction-based DIA enables rapid target library generation in the same background chemical matrix as each quantitative injection. Using a new software tool embedded within EncyclopeDIA for scheduling parallel reaction monitoring assays, we show consistent quantification across three orders of magnitude of input material. Using this approach, we demonstrate measuring peptide quantitative linearity down to 25x dilution in a background of only a 1 ng proteome without requiring stable isotope labeled standards. At 1 ng total protein on column, we found clear consistency between immune cell populations measured using flow cytometry and immune markers measured using LIT-based proteomics. We believe hybrid quadrupole-LIT instruments represent an economic solution to democratizing mass spectrometry in a wide variety of laboratory settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA