Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glia ; 67(12): 2279-2293, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31313857

RESUMEN

A traumatic childhood is among the most important risk factors for developing stress-related psychopathologies such as posttraumatic stress disorder or depression later in life. However, despite the proven role of astrocytes in regulating transmitter release and synaptic plasticity, the contribution of astrocytic transmitter metabolism to such stress-induced psychopathologies is currently not understood. In rodents, childhood adversity can be modeled by juvenile stress exposure, resulting in increased anxiety, and impaired coping with stress in adulthood. We describe that such juvenile stress in rats, regardless of additional stress in adulthood, leads to reduced synaptic efficacy in the ventral CA1 (vCA1) Schaffer collaterals, but increased long-term potentiation (LTP) of synaptic transmission after high-frequency stimulation. We tested whether the glutamate-glutamine-cycle guides the lasting changes on plasticity observed after juvenile stress by blocking the astrocytic glutamate-degrading enzyme, glutamine synthetase (GS). Indeed, the pharmacological inhibition of GS by methionine sulfoximine in slices from naïve rats mimics the effect of juvenile stress on vCA1-LTP, while supplying glutamine is sufficient to normalize the LTP. Assessing steady-state mRNA levels in the vCA1 stratum radiatum reveals distinct shifts in the expression of GS, astrocytic glutamate, and glutamine transporters after stress in juvenility, adulthood, or combined juvenile/adult stress. While GS mRNA expression levels are lastingly reduced after juvenile stress, GS protein levels are maintained stable. Together our results suggest a critical role for astrocytes and the glutamate-glutamine cycle in mediating long-term effects of juvenile stress on plasticity in the vCA1, a region associated with anxiety and emotional memory processing.


Asunto(s)
Astrocitos/enzimología , Glutamato-Amoníaco Ligasa/fisiología , Hipocampo/enzimología , Potenciación a Largo Plazo/fisiología , Estrés Psicológico/enzimología , Factores de Edad , Animales , Astrocitos/patología , Hipocampo/patología , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Estrés Psicológico/patología , Estrés Psicológico/psicología
2.
Epilepsia ; 60(2): 322-336, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30609012

RESUMEN

OBJECTIVE: Blood-brain barrier (BBB) impairment, redistribution of pericytes, and disturbances in cerebral blood flow may contribute to the increased seizure propensity and neurological comorbidities associated with epilepsy. However, despite the growing evidence of postictal disturbances in microcirculation, it is not known how recurrent seizures influence pericytic membrane currents and subsequent vasodilation. METHODS: Here, we investigated successive changes in capillary neurovascular coupling and BBB integrity during recurrent seizures induced by 4-aminopyridine or low-Mg2+ conditions. To avoid the influence of arteriolar dilation and cerebral blood flow changes on the capillary response, we measured seizure-associated pericytic membrane currents, capillary motility, and permeability changes in a brain slice preparation. Arteriolar responses to 4-aminopyridine-induced seizures were further studied in anesthetized Sprague Dawley rats by using electrocorticography and tissue oxygen recordings simultaneously with intravital imaging of arteriolar diameter, BBB permeability, and cellular damage. RESULTS: Within the preserved vascular network in hippocampal slice cultures, pericytes regulated capillary diameter in response to vasoactive agents and neuronal activity. Seizures induced distinct patterns of membrane currents that contributed to the regulation of pericytic length. During the course of recurrent seizures, individual vasodilation responses eroded and BBB permeability increased, despite unaltered neurometabolic coupling. Reduced vascular responsiveness was associated with mitochondrial depolarization in pericytes. Subsequent capillary constriction preceded BBB opening, suggesting that pericyte injury mediates the breach in capillary integrity. In vivo findings were consistent with slice experiments, showing seizure-related neurovascular decoupling and BBB dysfunction in small cortical arterioles, accompanied by perivascular cellular injury despite normoxic conditions. SIGNIFICANCE: Our study presents a direct observation of gradually developing neurovascular decoupling during recurrent seizures and suggests pericytic injury as an inducer of vascular dysfunction in epilepsy.


Asunto(s)
Barrera Hematoencefálica/fisiopatología , Capilares/lesiones , Permeabilidad Capilar/fisiología , Convulsiones/fisiopatología , Animales , Encéfalo/fisiopatología , Capilares/fisiopatología , Circulación Cerebrovascular/fisiología , Neuronas/fisiología , Acoplamiento Neurovascular/fisiología , Ratas Sprague-Dawley , Convulsiones/complicaciones
3.
Glia ; 66(5): 920-933, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29350438

RESUMEN

Human mesial temporal lobe epilepsy (MTLE) features subregion-specific hippocampal neurodegeneration and reactive astrogliosis, including up-regulation of the glial fibrillary acidic protein (GFAP) and down-regulation of glutamine synthetase (GS). However, the regional astrocytic expression pattern of GFAP and GS upon MTLE-associated neurodegeneration still remains elusive. We assessed GFAP and GS expression in strict correlation with the local neuronal number in cortical and hippocampal surgical specimens from 16 MTLE patients using immunohistochemistry, stereology and high-resolution image analysis for digital pathology and whole-slide imaging. In the cortex, GS-positive (GS+) astrocytes are dominant in all neuronal layers, with a neuron to GS+ cell ratio of 2:1. GFAP-positive (GFAP+) cells are widely spaced, with a GS+ to GFAP+ cell ratio of 3:1-5:1. White matter astrocytes, on the contrary, express mainly GFAP and, to a lesser extent, GS. In the hippocampus, the neuron to GS+ cell ratio is approximately 1:1. Hippocampal degeneration is associated with a reduction of GS+ astrocytes, which is proportional to the degree of neuronal loss and primarily present in the hilus. Up-regulation of GFAP as a classical hallmark of reactive astrogliosis does not follow the GS-pattern and is prominent in the CA1. Reactive alterations were proportional to the neuronal loss in the neuronal somatic layers (stratum pyramidale and hilus), while observed to a lesser extent in the axonal/dendritic layers (stratum radiatum, molecular layer). We conclude that astrocytic GS is expressed in the neuronal somatic layers and, upon neurodegeneration, is down-regulated proportionally to the degree of neuronal loss.


Asunto(s)
Astrocitos/enzimología , Corteza Cerebral/enzimología , Epilepsia del Lóbulo Temporal/enzimología , Glutamato-Amoníaco Ligasa/metabolismo , Neuronas/enzimología , Adulto , Astrocitos/patología , Muerte Celular/fisiología , Corteza Cerebral/patología , Epilepsia Refractaria/enzimología , Epilepsia Refractaria/patología , Epilepsia Refractaria/cirugía , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/cirugía , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/enzimología , Gliosis/patología , Humanos , Inmunohistoquímica , Masculino , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/patología , Neuronas/patología , Sustancia Blanca/enzimología , Sustancia Blanca/patología
4.
Semin Cell Dev Biol ; 38: 35-42, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25444848

RESUMEN

The blood-brain barrier is part of the neurovascular unit and serves as a functional and anatomical barrier between the blood and the extracellular space. It controls the flow of solutes in and out of the brain thereby providing an optimal environment for neuronal functioning. Paracellular transport between endothelial cells is restricted by tight junctions and transendothelial transport is reduced and more selective compared to capillaries of other organs. Further, the blood-brain barrier is involved in controlling blood flow and it is the site for signaling damage of the nervous system to the peripheral immune system. As an important player in brain homeostasis, blood-brain barrier dysfunction has been implicated in the pathophysiology of many brain diseases including stroke, traumatic brain injury, brain tumors, epilepsy and neurodegenerative disorders. In this article - highlighting recent advances in basic science - we review the features of the blood-brain barrier and their significance for neuronal homeostasis to discuss clinical implications for neurological complications following cerebral ischemia.


Asunto(s)
Barrera Hematoencefálica/fisiología , Encefalopatías/fisiopatología , Encéfalo/inmunología , Homeostasis , Animales , Encefalopatías/metabolismo , Humanos , Accidente Cerebrovascular/fisiopatología
5.
Hippocampus ; 27(3): 315-331, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27935155

RESUMEN

Learning is facilitated when information can be incorporated into an already learned set of rules or 'mental schema'. The location of a new restaurant, for example, is learned more easily if the neighbourhood's general layout is already known. This type of information is processed by the hippocampus and stored as a schema in the cortex, but it is not known whether the hippocampus can also map new stimuli to cortical schemata that are hippocampus-independent, such as odour classification. Using a hippocampus-independent odour-rule task we found that animals without a functional hippocampus learnt which odours did not fit the rule faster than sham animals, which persistently applied the rule to all odours. Conversely, when non-fitting odours were linked to a new rule sham animals were faster to link these odours to the new rule. The hippocampus, thus, regulates the association of stimuli with existing schemata even when the schemata are hippocampus-independent. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Anticipación Psicológica/fisiología , Asociación , Generalización Psicológica/fisiología , Hipocampo/fisiología , Inhibición Psicológica , Aprendizaje Inverso/fisiología , Animales , Hipocampo/efectos de los fármacos , Hipocampo/patología , Ácido Iboténico/toxicidad , Masculino , Memoria/fisiología , Actividad Motora/fisiología , Pruebas Neuropsicológicas , Percepción Olfatoria/fisiología , Ratas
6.
Epilepsia ; 58 Suppl 4: 40-52, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29105075

RESUMEN

In vitro preparations are a powerful tool to explore the mechanisms and processes underlying epileptogenesis and ictogenesis. In this review, we critically review the numerous in vitro methodologies utilized in epilepsy research. We provide support for the inclusion of detailed descriptions of techniques, including often ignored parameters with unpredictable yet significant effects on study reproducibility and outcomes. In addition, we explore how recent developments in brain slice preparation relate to their use as models of epileptic activity.


Asunto(s)
Ondas Encefálicas/fisiología , Encéfalo/fisiopatología , Epilepsia/patología , Técnicas In Vitro , Comités Consultivos , Animales , Modelos Animales de Enfermedad , Femenino , Técnicas In Vitro/instrumentación , Técnicas In Vitro/métodos , Técnicas In Vitro/normas , Masculino , Técnicas de Cultivo de Órganos/métodos , Técnicas de Cultivo de Órganos/normas
7.
Cereb Cortex ; 26(5): 2325-2340, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26908632

RESUMEN

Parvalbumin-positive (PV) basket cells provide perisomatic inhibition in the cortex and hippocampus and control generation of memory-related network activity patterns, such as sharp wave ripples (SPW-R). Deterioration of this class of fast-spiking interneurons has been observed in neuropsychiatric disorders and evidence from animal models suggests their involvement in the acquisition and extinction of fear memories. Here, we used mice with neuron type-targeted expression of the presynaptic gain-of-function glycine receptor RNA variant GlyR α3L(185L)to genetically enhance the network activity of PV interneurons. These mice showed reduced extinction of contextual fear memory but normal auditory cued fear memory. They furthermore displayed increase of SPW-R activity in area CA3 and CA1 and facilitated propagation of this particular network activity pattern, as determined in ventral hippocampal slice preparations. Individual freezing levels during extinction and SPW-R propagation were correlated across genotypes. The same was true for parvalbumin immunoreactivity in the ventral hippocampus, which was generally augmented in the GlyR mutant mice and correlated with individual freezing levels. Together, these results identify PV interneurons as critical cellular substrate of fear memory persistence and associated SPW-R activity in the hippocampus. Our findings may be relevant for the identification and characterization of physiological correlates for posttraumatic stress and anxiety disorders.


Asunto(s)
Extinción Psicológica/fisiología , Miedo/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Memoria/fisiología , Parvalbúminas/metabolismo , Animales , Reacción de Prevención/fisiología , Condicionamiento Clásico , Femenino , Hipocampo/fisiología , Interneuronas/metabolismo , Masculino , Ratones , Ratones Transgénicos
8.
Int J Mol Sci ; 18(9)2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28832554

RESUMEN

Neuronal lactate uptake supports energy metabolism associated with synaptic signaling and recovery of extracellular ion gradients following neuronal activation. Altered expression of the monocarboxylate transporters (MCT) in temporal lobe epilepsy (TLE) hampers lactate removal into the bloodstream. The resulting increase in parenchymal lactate levels might exert both, anti- and pro-ictogen effects, by causing acidosis and by supplementing energy metabolism, respectively. Hence, we assessed the contribution of lactate to the maintenance of transmembrane potassium gradients, synaptic signaling and pathological network activity in chronic epileptic human tissue. Stimulus induced and spontaneous field potentials and extracellular potassium concentration changes (∆[K⁺]O) were recorded in parallel with tissue pO2 and pH in slices from TLE patients while blocking MCTs by α-cyano-4-hydroxycinnamic acid (4-CIN) or d-lactate. Intrinsic lactate contributed to the oxidative energy metabolism in chronic epileptic tissue as revealed by the changes in pO2 following blockade of lactate uptake. However, unlike the results in rat hippocampus, ∆[K⁺]O recovery kinetics and field potential amplitude did not depend on the presence of lactate. Remarkably, inhibition of lactate uptake exerted pH-independent anti-seizure effects both in healthy rat and chronic epileptic tissue and this effect was partly mediated via adenosine 1 receptor activation following decreased oxidative metabolism.


Asunto(s)
Potenciales de Acción , Corteza Entorrinal/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Ácido Láctico/metabolismo , Neocórtex/metabolismo , Animales , Corteza Entorrinal/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Humanos , Neocórtex/fisiopatología , Potasio/metabolismo , Ratas , Ratas Wistar
9.
Int J Mol Sci ; 18(9)2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28880249

RESUMEN

Neuronal injury due to seizures may result from a mismatch of energy demand and adenosine triphosphate (ATP) synthesis. However, ATP demand and oxygen consumption rates have not been accurately determined, yet, for different patterns of epileptic activity, such as interictal and ictal events. We studied interictal-like and seizure-like epileptiform activity induced by the GABAA antagonist bicuculline alone, and with co-application of the M-current blocker XE-991, in rat hippocampal slices. Metabolic changes were investigated based on recording partial oxygen pressure, extracellular potassium concentration, and intracellular flavine adenine dinucleotide (FAD) redox potential. Recorded data were used to calculate oxygen consumption and relative ATP consumption rates, cellular ATP depletion, and changes in FAD/FADH2 ratio by applying a reactive-diffusion and a two compartment metabolic model. Oxygen-consumption rates were ca. five times higher during seizure activity than interictal activity. Additionally, ATP consumption was higher during seizure activity (~94% above control) than interictal activity (~15% above control). Modeling of FAD transients based on partial pressure of oxygen recordings confirmed increased energy demand during both seizure and interictal activity and predicted actual FAD autofluorescence recordings, thereby validating the model. Quantifying metabolic alterations during epileptiform activity has translational relevance as it may help to understand the contribution of energy supply and demand mismatches to seizure-induced injury.


Asunto(s)
Potenciales de Acción/fisiología , Consumo de Oxígeno/fisiología , Convulsiones/metabolismo , Potenciales de Acción/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Antracenos/farmacología , Bicuculina/farmacología , Electrofisiología , Flavina-Adenina Dinucleótido/metabolismo , Masculino , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Wistar
10.
Glia ; 64(6): 911-22, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26875694

RESUMEN

Childhood trauma is a well-described risk factor for the development of stress-related psychopathology such as posttraumatic stress disorder or depression later in life. Childhood adversity can be modeled in rodents by juvenile stress (JS) protocols, resulting in impaired coping with stressful challenges in adulthood. In the current study, we investigated the long-lasting impact of JS on the expression of molecular factors for glutamate and γ-aminobutyric acid (GABA) uptake and turnover in sublayers of the dentate gyrus (DG) using laser microdissection and quantitative real-time polymerase chain reaction. We observed reduced mRNA expression levels after JS for factors mediating astrocytic glutamate and GABA uptake and degradation. These alterations were prominently observed in the dorsal but not ventral DG granule cell layer, indicating a lasting change in astrocytic GABA and glutamate metabolism that may affect dorsal DG network activity. Indeed, we observed increased inhibition and a lack of facilitation in response to paired-pulse stimulation at short interstimulus intervals in the dorsal DG after JS, while no alterations were evident in basal synaptic transmission or forms of long-term plasticity. The shift in paired-pulse response was mimicked by pharmacologically blocking the astrocytic GABA transporter GAT-3 in naïve animals. Accordingly, reduced expression levels of GAT-3 were confirmed at the protein level in the dorsal granule cell layer of rats stressed in juvenility. Together, these data demonstrate a lasting shift in the excitatory/inhibitory balance of dorsal DG network activity by JS that appears to be mediated by decreased GABA uptake into astrocytes.


Asunto(s)
Astrocitos/metabolismo , Comunicación Celular/fisiología , Giro Dentado/metabolismo , Neuronas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Envejecimiento , Animales , Estimulación Eléctrica/métodos , Ácido Glutámico/metabolismo , Masculino , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Transmisión Sináptica/fisiología
11.
J Neurophysiol ; 116(5): 2420-2430, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27559140

RESUMEN

Astrocyte-derived lactate supports pathologically enhanced neuronal metabolism, but its role under physiological conditions is still a matter of debate. Here, we determined the contribution of astrocytic neuronal lactate shuttle for maintenance of ion homeostasis and energy metabolism. We tested for the effects of α-cyano-4-hydroxycinnamic acid (4-CIN), which could interfere with energy metabolism by blocking monocarboxylate-transporter 2 (MCT2)-mediated neuronal lactate uptake, on evoked potentials, stimulus-induced changes in K+, Na+, Ca2+, and oxygen concentrations as well as on changes in flavin adenine dinucleotide (FAD) autofluorescence in the hippocampal area CA3. MCT2 blockade by 4-CIN reduced synaptically evoked but not antidromic population spikes. This effect was dependent on the activation of KATP channels indicating reduced neuronal ATP synthesis. By contrast, lactate receptor activation by 3,5-dihydroxybenzoic acid (3,5-DHBA) resulted in increased antidromic and orthodromic population spikes suggesting that 4-CIN effects are not mediated by lactate accumulation and subsequent activation of lactate receptors. Recovery kinetics of all ion transients were prolonged and baseline K+ concentration became elevated by blockade of lactate uptake. Lactate contributed to oxidative metabolism as both baseline respiration and stimulus-induced changes in Po2 were decreased, while FAD fluorescence increased likely due to a reduced conversion of FAD into FADH2 These data suggest that lactate shuttle contributes to regulation of ion homeostatsis and synaptic signaling even in the presence of ample glucose.


Asunto(s)
Región CA3 Hipocampal/metabolismo , Metabolismo Energético/fisiología , Líquido Extracelular/fisiología , Ácido Láctico/metabolismo , Neuronas/metabolismo , Animales , Región CA3 Hipocampal/efectos de los fármacos , Ácidos Cumáricos/farmacología , Metabolismo Energético/efectos de los fármacos , Líquido Extracelular/efectos de los fármacos , Hidroxibenzoatos/farmacología , Ácido Láctico/antagonistas & inhibidores , Masculino , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Resorcinoles/farmacología
12.
Neurobiol Dis ; 91: 155-65, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26972679

RESUMEN

Epileptogenesis following insults to the brain may be triggered by a dysfunctional blood-brain barrier (BBB) associated with albumin extravasation and activation of astrocytes. Using ex vivo recordings from the BBB-disrupted hippocampus after neocortical photothrombotic stroke, we previously demonstrated abnormal activity-dependent accumulation of extracellular potassium with facilitated generation of seizure like events and spreading depolarizations. Similar changes could be observed after intracerebroventricular (icv) application of albumin. We hypothesized that alterations in extracellular potassium and glutamate homeostasis might lead to alterations in synaptic interactions. We therefore assessed the effects of icv albumin on homo- and heterosynaptic plasticity in hippocampal CA1, 24h after a single injection or 7days after continuous infusion of icv albumin. We demonstrate alterations in both homo- and heterosynaptic plasticity compared to control conditions in ex vivo slice studies. Albumin-treated tissue reveals (1) reduced long-term depression following low-frequency stimulation; (2) increased long-term potentiation of population spikes in response to 20Hz stimulation; (3) potentiated responses to Schaffer collateral stimulation following high-frequency stimulation of the direct cortical input and low-frequency stimulation of alveus and finally, (4) TGFß receptor II (TGFßR-II) involvement in albumin-induced homosynaptic plasticity changes. We conclude that albumin-induced network hyperexcitability is associated with abnormal homo- and heterosynaptic plasticity that could partly be reversed by interference with TGFßR-II-mediated signaling and therefore it might be an important factor in the process of epileptogenesis.


Asunto(s)
Albúminas/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Región CA1 Hipocampal/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Albúminas/administración & dosificación , Animales , Astrocitos/efectos de los fármacos , Barrera Hematoencefálica/fisiopatología , Región CA1 Hipocampal/citología , Inyecciones Intraventriculares , Potenciación a Largo Plazo/fisiología , Masculino , Plasticidad Neuronal/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ratas Wistar
13.
Hippocampus ; 26(12): 1486-1492, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27699900

RESUMEN

Norepinephrine, is involved in the enhancement of learning and memory formation by regulating synaptic mechanisms through its ability to activate pre- and post-synaptic adrenergic receptors. Here we show that ß-agonists of norepinephrine facilitate the induction of both associational LTP and sharp wave ripples (SPW-Rs) in acute slices of rat hippocampus in area CA3. Surprisingly, this facilitating effect persists when slices are only pretreated with ß-receptor agonists followed by wash out and application of the unspecific ß-adrenoreceptor (ßAR) antagonist propranolol. During application of ßAR agonists repeated stimulation resulted in facilitated induction of SPW-Rs. Since SPW-Rs are thought to be involved in memory replay we studied the effects of ßAR-agonists on spontaneous SPW-Rs in murine hippocampus and found that amplitude and incidence of SPW-Rs increased. These effects involve cyclic-AMP and the activation of protein kinase A and suggest a supportive role in memory consolidation. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Región CA3 Hipocampal/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Antagonistas Adrenérgicos beta/farmacología , Animales , Ondas Encefálicas/efectos de los fármacos , Ondas Encefálicas/fisiología , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Isoproterenol/farmacología , Potenciación a Largo Plazo/fisiología , Ratones Endogámicos C57BL , Propranolol/farmacología , Ratas Wistar , Receptores Adrenérgicos beta/metabolismo , Técnicas de Cultivo de Tejidos
14.
Epilepsia ; 57(9): 1354-62, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27374986

RESUMEN

Peripheral biomarkers have myriad potential uses for treatment, prediction, prognostication, and pharmacovigilance in epilepsy. To date, no single peripheral biomarker has demonstrated proven effectiveness, although multiple candidates are in development. In this review, we discuss the major areas of focus including inflammation, blood-brain barrier dysfunction, redox alterations, metabolism, hormones and growth factors.


Asunto(s)
Biomarcadores/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Animales , Barrera Hematoencefálica/fisiopatología , Humanos , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo
15.
Epilepsia ; 57(5): 746-56, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27087530

RESUMEN

OBJECTIVE: The need for alternative pharmacologic strategies in treatment of epilepsies is pressing for about 30% of patients with epilepsy who do not experience satisfactory seizure control with present treatments. In temporal lobe epilepsy (TLE) even up to 80% of patients are pharmacoresistant, and surgical resection of the ictogenic tissue is only possible for a minority of TLE patients. In this study we investigate purinergic modulation of drug-resistant seizure-like events (SLEs) in human temporal cortex slices. METHODS: Layer V/VI field potentials from a total of 77 neocortical slices from 17 pharmacoresistant patients were recorded to monitor SLEs induced by application of 8 mM [K(+) ] and 50 µm bicuculline. RESULTS: Activating A1 receptors with a specific agonist completely suppressed SLEs in 73% of human temporal cortex slices. In the remaining slices, incidence of SLEs was markedly reduced. Because a subportion of slices can be pharmacosensitive, we tested effects of an A1 agonist, in slices insensitive to a high dose of carbamazepine (50 µm). Also in these cases the A1 agonist was equally efficient. Moreover, ATP and adenosine blocked or modulated SLEs, an effect mediated not by P2 receptors but rather by adenosine A1 receptors. SIGNIFICANCE: Selective activation of A1 receptors mediates a strong anticonvulsant action in human neocortical slices from pharmacoresistant patients. We propose that our human slice model of seizure-like activity is a feasible option for future studies investigating new antiepileptic drug (AED) candidates.


Asunto(s)
Epilepsia Refractaria/patología , Neocórtex/efectos de los fármacos , Neocórtex/metabolismo , Receptores Purinérgicos P1/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Adenosina Trifosfato/farmacología , Adulto , Bicuculina/análogos & derivados , Bicuculina/farmacología , Carbamazepina/efectos adversos , Carbamazepina/farmacología , Epilepsia Refractaria/tratamiento farmacológico , Estimulación Eléctrica , Potenciales Evocados/efectos de los fármacos , Femenino , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Potasio/farmacología , Purinérgicos/farmacología , Factores de Tiempo , Adulto Joven
16.
Eur J Neurosci ; 41(1): 31-44, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25306895

RESUMEN

Stressful experiences do not only cause peripheral changes in stress hormone levels, but also affect central structures such as the hippocampus, implicated in spatial orientation, stress evaluation, and learning and memory. It has been suggested that formation of memory traces is dependent on hippocampal gamma oscillations observed during alert behaviour and rapid eye movement sleep. Furthermore, during quiescent behaviour, sharp wave-ripple (SW-R) activity emerges. These events provide a temporal window during which reactivation of memory ensembles occur. We hypothesized that stress-responsive modulators, such as corticosterone (CORT), corticotropin-releasing factor (CRF) and the neurosteroid 3α, 21-dihydroxy-5α-pregnan-20-one (THDOC) are able to modulate gamma oscillations and SW-Rs. Using in vitro hippocampal slices, we studied acute and subacute (2 h) impact of these agents on gamma oscillations in area cornu ammonis 3 of the ventral hippocampus induced by acetylcholine (10 µm) combined with physostigmine (2 µm). CORT increased the gamma oscillations in a dose-dependent fashion. This effect was mediated by glucocorticoid receptors. Likewise, CRF augmented gamma oscillations via CRF type 1 receptor. Lastly, THDOC was found to diminish cholinergic gamma oscillations in a dose-dependent manner. Neither CORT, CRF nor THDOC modulated gamma power when pre-applied for 1 h, 2 h before the induction of gamma oscillations. Interestingly, stress-related neuromodulators had rather mild effects on spontaneous SW-R compared with their effects on gamma oscillations. These data suggest that the alteration of hippocampal gamma oscillation strength in vitro by stress-related agents is an acute process, permitting fast adaptation to new attention-requiring situations in vivo.


Asunto(s)
Corticosterona/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Ritmo Gamma/fisiología , Hipocampo/fisiología , Acetilcolina/metabolismo , Animales , Inhibidores de la Colinesterasa/farmacología , Desoxicorticosterona/análogos & derivados , Desoxicorticosterona/farmacología , Relación Dosis-Respuesta a Droga , Ritmo Gamma/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Neurotransmisores/farmacología , Fisostigmina/farmacología , Ratas Wistar , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Receptores de Glucocorticoides/metabolismo , Factores de Tiempo , Técnicas de Cultivo de Tejidos
17.
Eur J Neurosci ; 42(2): 1808-17, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25959377

RESUMEN

We investigated the effects of hypoxia on sharp wave-ripple complex (SPW-R) activity and recurrent epileptiform discharges in rat hippocampal slices, and the mechanisms underlying block of this activity. Oxygen levels were measured using Clark-style oxygen sensor microelectrodes. In contrast to recurrent epileptiform discharges, oxygen consumption was negligible during SPW-R activity. These network activities were reversibly blocked when oxygen levels were reduced to 20% or less for 3 min. The prolongation of hypoxic periods to 6 min caused reversible block of SPW-Rs during 20% oxygen and irreversible block when 0% oxygen (anoxia) was applied. In contrast, recurrent epileptiform discharges were more resistant to prolonged anoxia and almost fully recovered after 6 min of anoxia. SPW-Rs were unaffected by the application of 1-butyl-3-(4-methylphenylsulfonyl) urea, a blocker of KATP channels, but they were blocked by activation of adenosine A1 receptors. In support of a modulatory function of adenosine, the amplitude and incidence of SPW-Rs were increased during application of the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Interestingly, hypoxia decreased the frequency of miniature excitatory post-synaptic currents in CA3 pyramidal cells, an effect that was converted into increased frequency by the adenosine A1 agonist DPCPX. In addition, DPCPX also delayed the onset of hypoxia-mediated block of SPW-Rs. Our data suggest that early adenosine release during hypoxia induces a decrease in pre-synaptic glutamate release and that both might contribute to transient block of SPW-Rs during hypoxia/anoxia in area CA3.


Asunto(s)
Región CA3 Hipocampal/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Hipoxia/fisiopatología , Red Nerviosa/fisiología , Células Piramidales/fisiología , Adenosina/metabolismo , Antagonistas del Receptor de Adenosina A1/farmacología , Animales , Bicuculina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Antagonistas de Receptores de GABA-A/farmacología , Técnicas In Vitro , Red Nerviosa/efectos de los fármacos , Oxígeno/metabolismo , Técnicas de Placa-Clamp , Quinoxalinas/farmacología , Ratas , Ratas Wistar , Valina/análogos & derivados , Valina/farmacología , Xantinas/farmacología
18.
Ann Neurol ; 75(6): 864-75, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24659129

RESUMEN

OBJECTIVE: Acquired epilepsy is frequently associated with structural lesions after trauma, stroke, and infections. Although seizures are often difficult to treat, there is no clinically applicable strategy to prevent the development of epilepsy in patients at risk. We have recently shown that vascular injury is associated with activation of albumin-mediated transforming growth factor ß (TGF-ß) signaling, and followed by local inflammatory response and epileptiform activity ex vivo. Here we investigated albumin-mediated TGF-ß signaling and tested the efficacy of blocking the TGF-ß pathway in preventing epilepsy. METHODS: We addressed the role of TGF-ß signaling in epileptogenesis in 2 different rat models of vascular injury, combining in vitro and in vivo biochemical assays, gene expression, and magnetic resonance and direct optical imaging for blood-brain barrier permeability and vascular reactivity. Long-term electrocorticographic recordings were acquired in freely behaving animals. RESULTS: We demonstrate that serum-derived albumin preferentially induces activation of the activin receptor-like kinase 5 pathway of TGF-ß receptor I in astrocytes. We further show that the angiotensin II type 1 receptor antagonist, losartan, previously identified as a blocker of peripheral TGF-ß signaling, effectively blocks albumin-induced TGF-ß activation in the brain. Most importantly, losartan prevents the development of delayed recurrent spontaneous seizures, an effect that persists weeks after drug withdrawal. INTERPRETATION: TGF-ß signaling, activated in astrocytes by serum-derived albumin, is involved in epileptogenesis. We propose losartan, a drug approved by the US Food and Drug Administration, as an efficient antiepileptogenic therapy for epilepsy associated with vascular injury.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsia/prevención & control , Losartán/uso terapéutico , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Animales , Animales Recién Nacidos , Anticonvulsivantes/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Benzamidas/farmacología , Barrera Hematoencefálica/fisiología , Células Cultivadas , Corteza Cerebral/citología , Dioxoles/farmacología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Endocitosis/efectos de los fármacos , Epilepsia/inducido químicamente , Epilepsia/patología , Epilepsia/fisiopatología , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/genética
19.
Neurobiol Learn Mem ; 125: 113-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26318491

RESUMEN

Previously stored information in the hippocampus is believed to be replayed during sharp wave-ripple activity thereby serving transfer of information from hippocampal areas CA3 and CA1 to the cortical mantle and memory consolidation. The subiculum represents the main hippocampal output and contains both regular spiking and burst firing neurons that may project to different targets in the CNS. We recorded laminar profiles and intracellular correlates of spontaneous subicular events in mouse horizontal hippocampal slices and investigated involvement of the different subtypes of subicular pyramidal cells. Subicular sharp wave-ripples (SWRs) depend on input from the CA3 and CA1 regions as shown by microdissection experiments between hippocampal subareas. The extracellular subicular waves are associated with multiple unit activity, which varies in form and size. Intracellular recordings reveal that the same pyramidal cell can show different responses to SWRs. In the majority of cases, SWRs cause subthreshold depolarizing potentials. Burster neurons regularly contribute to generation of SWRs by action potential firing, whereas regular-spiking neurons are often inhibited.


Asunto(s)
Potenciales de Acción/fisiología , Hipocampo/fisiología , Células Piramidales/fisiología , Animales , Estimulación Eléctrica , Ratones
20.
Brain Behav Immun ; 49: 188-96, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26044087

RESUMEN

The proteasome is the core of the ubiquitin-proteasome system and is involved in synaptic protein metabolism. The incorporation of three inducible immuno-subunits into the proteasome results in the generation of the so-called immunoproteasome, which is endowed of pathophysiological functions related to immunity and inflammation. In healthy human brain, the expression of the key catalytic ß5i subunit of the immunoproteasome is almost absent, while it is induced in the epileptogenic foci surgically resected from patients with pharmaco-resistant seizures, including temporal lobe epilepsy. We show here that the ß5i immuno-subunit is induced in experimental epilepsy, and its selective pharmacological inhibition significantly prevents, or delays, 4-aminopyridine-induced seizure-like events in acute rat hippocampal/entorhinal cortex slices. These effects are stronger in slices from epileptic vs normal rats, likely due to the more prominent ß5i subunit expression in neurons and glia cells of diseased tissue. ß5i subunit is transcriptionally induced in epileptogenic tissue likely by Toll-like receptor 4 signaling activation, and independently on promoter methylation. The recent availability of selective ß5i subunit inhibitors opens up novel therapeutic opportunities for seizure inhibition in drug-resistant epilepsies.


Asunto(s)
Epilepsia/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Modelos Animales de Enfermedad , Corteza Entorrinal/fisiopatología , Epilepsia/fisiopatología , Hipocampo/fisiopatología , Masculino , Oligopéptidos/farmacología , Inhibidores de Proteasoma/farmacología , Subunidades de Proteína/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA